
Why study PL ?

“A different language is a different vision of life”
- Fellini

- Hypothesis:

Programming language shapes programming thought

- Characteristics of a language affect how ideas can
be expressed in the language

So what does studying PL buy me?

Makes you look at things in different ways,
think outside of the box

Knowing language paradigms other than
traditional ones will give you new tools to
approach problems, even if you are
programming in Java

PL Dimensions

• Wide variety of programming languages

• How do they differ?

• along certain dimensions...

• What are these dimensions?

Dimension: Syntax

• Languages have different syntax
– But the difference in syntax can be

superficial
– C# and Java have different syntax, but are

very similar

• In this class, we have looked beyond
superficial syntax to understand the
underlying principles

Dimension: Computation model

• Functional: Lisp, OCaml, ML

• Imperative: Fortran, C, Python

• Object oriented: C++, Java, C#, Python

• Constraint-based: Prolog, CLP(R)

Dimension: Typing model

• Statically typed: Java, C, C++, C#,
OCaml

• Dynamically typed: Lisp, Scheme, Perl,
Smalltalk, Python

Dimension: Execution model

• Compiled: C, C++, OCaml
• Interpreted: Perl, Python, shell

scripting PLs
• Hybrid: Java

Final words on functional
programming

Advantages of functional progs

• Functional programming more concise
“one line of lisp can replace 20 lines of C”
(quote from http://www.ddj.com/dept/architect/184414500?pgno=3)

• Recall reverse function in OCaml:

• How many lines in C, C++?

let reverse l = fold (::) [] l

http://www.ddj.com/dept/architect/184414500?pgno=3)

Can better reason about progs

• No side effects. Call a function twice
with same params, produces same value

• As a result, computations can be
reordered more easily

• They can also be parallelized more easily

Industry

• From the authors of map reduce:
“Inspired by similar primitives in LISP and
other languages”
http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0003.html

• The point is this: programmers who only
know Java/C/C++ would probably not
have come up with this idea

• Many other similar examples in industry

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0003.html

Industry

• Microsoft: F#, inspired by Ocaml
https://channel9.msdn.com/blogs/pdc2008/tl11

• Jane Street Capital: uses Ocaml for their
trading software

• Facebook: Infer program analysis tool
implemented in OCaml, Sigma malware
detection tool and its concurrency library
implemented in Haskell

• Google: map reduce, influenced by FP
• Twitter: uses Scala for their back-end (Scala has

roots in FP and OO)

Stack Overflow Survey

cloud

cloud

: functional or heavily influenced by functional

Top Paying by Language (self reported)

United States World

Final words on Constraint
Logic Programming

Different way of thinking

• State constraints, and ask solver to get solution
• Very powerful paradigm: separates constraint

generation from constraint solving
• You generate the constraints, and the used off-

the-shelf solver

• You will see a very powerful application of this
in the last Python assignment

Industry

• Used in Watson, IBM’s Jeopardy-winning
computer

• Used in Amazon’s automated-reasoning bot
called BugBear for its Prime Video App
• BugBear – code analyzers for C/C++, Java,

and TypeScript

Industry

• Suppose we require that, in function F, the
function `open_resource` should always be
called before the function `use_resource`.

• called_before imposes constraints on the
shape of the so-called call graph.

Python

• Python has a very relaxed philosophy
– if something "can be done" then it is allowed.

• Combination of dynamic types +
everything is an object makes for very
flexible, very intuitive code.

No static types

• No static type system to "prohibit"
operations.

• No more of that OCaml compiler giving
you hard-to-decypher error messages!

• And... No need to formally define the
type system (although still need to define
the dynamic semantics somehow)

Similarities to Ocaml

• Uniform model: everything is an object,
including functions

• Can pass functions around just as with
objects

• Supports functional programming style
with map and fold

Industry

• Python is Everywhere!
• Web Development: Instagram, Pinterest,

Google incorporate Python in backend web
development.

• Data Science: Netflix uses scipy and numpy
for numerical computing to manage user
traffic.

• Machine Learning: PyTorch and Tensorflow
are essential Python libraries in ML systems.

OCaml/Python comparison

OCaml Python

PL paradigm functional OO/imperative

Basic unit Expr/value
Objects/
instances

Types statically dynamicaclly

DataModel env lookup
“pointers” to
mutable objs

Dynamic vs. Static, OO vs. Func

Statically typed
Dynamically

typed

OO Java
Python,

Smalltalk

Functional Ocaml, Haskell Lisp/Scheme

