
Unification

At the core of how Prolog computes is Unification, which is based on Substitution.

There are 3 rules for unification:

• Atoms unify if they are identical

▪ e.g., monday & monday unifty but not monday & wednesday.

• Variables unify with anything.

▪ e.g., X & monday unify, X & black (friday).

• Compound terms unfiy only if their top-function symbols and arities match and
their arguments unify recursively.

▪ e.g., black(X) & black(friday) unify, next(thursday, Y) & next(thursday, friday)

unify, play(sunday) & study(X) do not unify.

X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

{P/Q,P/R}

{P/Q,P/R,Q/a}

Unification Example

How to get the correct solution {P/a,R/a,Q/a}?

X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

Unification Example

X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

{P/Q,P/R}

Unification Example

X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

{P/Q,P/R}
{P/Q,Q/R}

Unification Example

X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

{P/Q,P/R}
{P/Q,Q/R}
{P/R,Q/R}

Unification Example

X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

{P/Q,P/R}
{P/Q,Q/R}
{P/R,Q/R}

{P/R,Q/R,Q/a}

Unification Example

X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

{P/Q,P/R}
{P/Q,Q/R}
{P/R,Q/R}

{P/R,Q/R,Q/a}

{P/R,Q/R,R/a}

Unification Example

Unification Example
X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

{P/Q,P/R}
{P/Q,Q/R}
{P/R,Q/R}

{P/R,Q/R,Q/a}

{P/R,Q/R,R/a}

{P/a,Q/a,R/a}

Unification Example
X = f(P,P,Q), Y = f(Q,R,a)

{P/Q}

{P/Q,P/R}
{P/Q,Q/R}
{P/R,Q/R}

{P/R,Q/R,Q/a}

{P/R,Q/R,R/a}

{P/a,Q/a,R/a}

Propagate a current unifier to the previous and vice versa!

unify(f(P,P,Q),f(Q,R,a),ϵ):

X = f(P,P,Q), Y = f(Q,R,a)

fold_left (fun 𝜃 (X,Y) -> unify(X,Y,𝜃)) ϵ [(P,Q),(P,R),(Q,a)]

unify(P,Q,ϵ)
X = P, Y = Q

𝜃 = [P/Q]

unify(P,R,[P/Q])

X = P[P/Q] = Q, Y = R[P/Q] = R

𝜃 = [P/Q]{Q/R} ⋃ {Q/R} = [P/R, Q/R]

unify(Q,a,[P/R, Q/R])

X = Q[P/R, Q/R] = R, Y = a

𝜃 = [P/R, Q/R]{R/a} ⋃ {R/a} = [P/a, Q/a, R/a]

𝜃 = [P/a, Q/a, R/a]

Unify

Example

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, U)

Resolvent: grandfatherOf(abe, U)

Abstract Interpreter Example

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

Resolvent: None

Abstract Interpreter Example

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

Resolvent: fatherOf(abe, Z), parentOf(Z, U)

Abstract Interpreter Example

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

fatherOf(abe, Z)

Resolvent: parentOf(Z, U)

Abstract Interpreter Example

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

fatherOf(abe, Z)

fatherOf(abe,homer)

Resolvent: parentOf(Z, U)

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

fatherOf(abe, Z)

fatherOf(abe,homer)

Resolvent: parentOf(homer, U)

Abstract Interpreter Example

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

fatherOf(abe, Z)

fatherOf(abe,homer)

parentOf(homer, U)

parentOf(homer,bart)

Resolvent: None

Abstract Interpreter Example

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, bart)

?-grandfatherOf(abe, U)

fatherOf(abe, Z)

fatherOf(abe,homer)

parentOf(homer, U)

parentOf(homer,bart)

Resolvent: None

Abstract Interpreter Example

Program P:

Goal G:

fatherOf(abe,homer).

parentOf(homer,bart).

grandfatherOf(X, Y) :–

 fatherOf(X, Z), parentOf(Z, Y).

?-grandfatherOf(abe, U)

𝜃 = {X/abe, Y/U}

unify(grandfatherOf(X, Y), grandfatherOf(abe, U))

Resolvent: {grandfatherOf(abe, U)}

run(P,G)

G: {grandfatherOf(abe, U)}

A: {grandfatherOf(abe, U)}

Resolvent: {fatherOf(abe, Z), parentOf(Z, U)}

G: {grandfatherOf(abe, U)}

A: {father(abe, Z)}

unify(fatherOf(abe, Z), father(abe, homer))

𝜃 = {Z/homer}

Resolvent: {parentOf(homer, U)}

G: {grandfatherOf(abe, U)}

A: {parentOf(homer, U)}

unify(parentOf(homer, U), parentOf(homer, bart))

𝜃 = {U/bart}

Resolvent: {}

G: {grandfatherOf(abe, bart)}

• In the code, renaming freshens a clause (or a term) by returning a new
clause (or a new term) where the clause (or term) variables have been
renamed with fresh variables.

• We may need to apply a rule multiple times in the nested loop. Keep a
rule refreshed before using avoids naming confliction.

