Unification

At the core of how Prolog computes is Unification, which is based on Substitution.

There are 3 rules for unification:

e Atoms unify if they are identical
m e.g., monday & monday unifty but not monday & wednesday.

» Variables unify with anything.
m e.g., X & monday unify, X & black (friday).

e Compound terms unfiy only if their top-function symbols and arities match and

their arguments unify recursively.
m e.g., black(X) & black(friday) unify, next(thursday, Y) & next(thursday, friday)
unify, play(sunday) & study(X) do not unify.



Unification Example

X = £(,p,Q), Y = f(T, 1)

{P/Q}

{p/Q,P/R}

{p/9, ,Q/a}

How to get the correct solution {P/a, ,Q/a}?



Unification Example

X = f£P,P,0), Y = f(Tl s )

{P/Q}




Unification Example

X = £(,p,Q), Y = f(T, rQ)

{P/Q}

{p/Q,P/R}



Unification Example

X = £(,p,Q), Y = f(T, rQ)

{P/Q}

{P/QI_}
{P/Q,0/R}



Unification Example

X = £(,p,Q), Y = f(T, rQ)

{P/0Q}
{P/QI_}
{»+9,0/R}

{P/R, }



Unification Example

X = £(,p,Q), Y = f(T, 1)

{P/0Q}
{P/QI_}
{»+9,0/R}
{P/R, }

{P/R,0/R,Q/a}



Unification Example

X = £(,p,Q), Y = f(T, 1)

{P/0Q}
{P/Q I_}
{»+9,0/R}
{P/R, }
{P/R, r e}

{P/R, ,R/a}



Unification Example

X

£(P,

Q), X = f(T, 1)

{P/0}
{P/Q I_}
{P+e, }
{P/R, }
{P/R, 1 Fa}
{P/R, &+, R/a}

{P/a, ,R/a}



Unification Example

X = £(,p,Q), Y = f(T, @)

{P/0}
{P/Q I_}
{P+e, }
{P/R, }
{P/R, 1 Fa}
{P/R, &+, R/a}

{P/a, ,R/a}

Propagate a current unifier to the previous and vice versa!



unify(X,Y,6) =

X = X6
Y = Yo
case

X is a variable that does not occur in Y:

return (0{X/Y} u {X/Y}) /xreplace X with Y in the substitution terms of # add X/Y to éx/

Y is a variable that does not occur in X:

return (0{Y/X} u {Y/X}) /xreplace Y with X in the substitution terms of # add Y/X to éx/

X and Y are indentical constants or variables:

return 6 L177it17
X is f(X1,...,Xn) and Y is f(Y1l,...,Yn):
return (fold_left (fun 6 (X,Y) —> unify(X,Y,8))
o [(X1,Y1),...,(Xn,Yn)])
otherwise:
raise FAIL
}
let unify(X,Y) = unify(X,Y,¢€)
unify(£(P,P,Q),£(Q,R,a),€): D —
X = £f(p,P,0Q), ¥ = £(Q,R,a) 6 = [P/a, Q/a, R/a]
fold left (fun 0 (X,Y) -> unify(X,Y¥,0)) € [(P,Q), ,(9,a)] ¢
unify(P,Q,€)
X=P, Y=0
6 = [p/O] Example

unify(Q,a,[P/R, Q/R])
X = Q[P/R, Q/R] = R, ¥ = a

6 = [P/R, Q/R]{R/a} U {R/a} = [P/a, Q/a, R/a] __|




Abstract Interpreter Example

Program P:
fatherOf(abe homer).

parentOf(homer,bart).

grandfatherOf(X,Y) —

fatherOf(X, Z), parentOf(Z, Y).
Goal G:

?-grandfatherOf(abe, U)

Resolvent: grandfatherOf(abe, U)



Abstract Interpreter Example

Program P:
fatherOf(abe homer).

parentOf(homer,bart).

grandfatherOf(X,Y) —
fatherOf(X, Z), parentOf(Z, Y).

Goal G:
?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

Resolvent: None



Abstract Interpreter Example

Program P:
fatherOf(abe homer).

parentOf(homer,bart).

grandfatherOf(X,Y) —
fatherOf(X, Z), parentOf(Z, Y).

Goal G:
?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

Resolvent: fatherOf(abe, Z), parentOf(Z, U)



Abstract Interpreter Example

Program P:
fatherOf(abe homer).

parentOf(homer,bart).

grandfatherOf(X,Y) —

fatherOf(X, Z), parentOf(Z, Y).
Goal G:

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

/

fatherOf(abe, Z)

Resolvent: parentOf(Z, U)



Program P:
fatherOf(abe homer).

parentOf(homer,bart).

grandfatherOf(X,Y) —

fatherOf(X, Z), parentOf(Z, Y).
Goal G:

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

e

fatherOf(abe, 7))

l

fatherOf(abe homer)

Resolvent: parentOf(Z, U)



Abstract Interpreter Example

Program P:
fatherOf(abe homer).

parentOf(homer,bart).

grandfatherOf(X,Y) —

fatherOf(X, Z), parentOf(Z, Y).
Goal G:

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

/

fatherOf(abe, 7))

l

fatherOf(abe ,homer)

Resolvent: parentOf(homer, U)



Abstract Interpreter Example

Program P:
fatherOf(abe homer).

parentOf(homer,bart).

grandfatherOf(X,Y) —

fatherOf(X, Z), parentOf(Z, Y).
Goal G:

?-grandfatherOf(abe, U)

?-grandfatherOf(abe, U)

O\

fatherOf(abe, Z) parentOf(homer, U)
fatherOf(abe ,homer) parentOf(homer,bart)

Resolvent: None



Abstract Interpreter Example

Program P:
fatherOf(abe homer).

parentOf(homer,bart).

grandfatherOf(X,Y) —

fatherOf(X, Z), parentOf(Z, Y).
Goal G:

?-grandfatherOf(abe, bart)

?-grandfatherOf(abe, U)

O\

fatherOf(abe, Z) parentOf(homer, U)
fatherOf(abe ,homer) parentOf(homer,bart)

Resolvent: None



Input: A goal Goal and a program P

Program P:

Output: An instance of Goal that is a logical consequence of P.

fatherOf(abe ,homer). Algorithm: run(PGoal
parentOf(homer,bart). L: G = Goal

Initialise resolvent to G.

. while (the resolvent is not empty) {
grandfatherOf(X’ Y) < choose a goal A from the resolvent //random goal
choose a (renamed) clause A' <- B1,...,Bn from P
fatherOf(X, Z), parentOf(Z, Y). such that A and A' unify with a unifier 6 // random rule
. (if no such goal and clause exist, exit the while loop).
(5()23' (;' replace A by B1l,...,Bn in the resolvent
ly ¢ to th lvent and G
?-grandfatherOf(abe, U) , PP TR0 The TEsOTHEnt &

If the resolvent is empty, then output G, else goto L.

run(P,G)

G: {grandfatherOf (ADE, U)} s iR
Resolvent: {grandfatherOf (abe, U)} .
A: {grandfatheroOf (abe, U)}

unify(grandfatherOf (X, Y), grandfatherOf (abe, U))

0 = {X/abe, Y/U}

Resolvent: {fatherOf(abe, Z), parentOf(Z, U)}

V G: {grandfatherOf (abe, U)}

A: {parentOf (homer, U)}
unify(parentOf (homer, U), parentOf (homer, bart))g

0 = {u/bart}

Resolvent: {}

v G: {grandfatherOf(abe, bart)} ., E



* In the code, renaming freshens a clause (or a term) by returning a new
clause (or a new term) where the clause (or term) variables have been

renamed with fresh variables.
* We may need to apply a rule multiple times in the nested loop. Keep a

rule refreshed before using avoids naming confliction.



