
∃𝑐∀𝑖𝑛 𝑄(𝑐, 𝑖𝑛)

𝜑 𝑝
𝑆𝑘[𝑐](𝑖𝑛)

Module I: Searching for
Simple Programs

Syntax-Guided Synthesis and
Enumerative Search

Week 1-2

Behavioral constraints

examples
[0] → 1
[5,1] → 2

Search strategy

Enumeration

Structural constraints

expression grammars

Today

Synthesis from examples: motivation and history
Syntax-guided synthesis
• expression grammars as structural constraints
• the SyGuS project

Enumerative search
• enumerating all programs generated by a grammar
• bottom-up vs top-down

Synthesis from examples

Synthesis from Examples

=
Programming by Example

=
Inductive Synthesis

Inductive Programming
Inductive Learning

The Zendo game

The teacher makes up a secret rule
• e.g. all pieces must be grounded

The teacher builds two koans (a
positive and a negative)
Students take turns to build koans and
ask the teacher to label them
A student can try to guess the rule
• if they are right, they win
• otherwise, the teacher builds a koan on

which the two rules disagree

This is called inductive
learning!

The Zendo game

Learner Teacher

initial koans

learning fails learning succeeds

guess

new koan

1960s: humans are good at this…
can computers do this?

Key issues in inductive learning

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Space of
programs

Programs matching
the observations

Program you actually
want

Key issues in inductive learning

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Space of
programs

Programs matching
the observations

Program you actually
want

Traditional ML emphasizes (2)
• Fix the space so that (1) is easy

So did a lot of PBD work

The synthesis approach

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Space of
programs

Programs matching
the observations

Program you actually
want

Modern emphasis

The synthesis approach

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Space of
programs

Programs matching
the observations

Program you actually
want

Modern emphasis
• If you can do really well with (1)

you can win
• (2) is still important

Key idea

Structural constraints
Search strategy

Behavioral constraints

Parametrize the search by structural
constraints, make the program space

domain-specific

Please submit your Principles Of Programming Languages (He Zhu)
of Spring 2021 Student Instructional Rating Survey by May 6!

Syntax-Guided Synthesis

Example

f(x) := sort(x[0..find(x, 0)]) + [0]

L ::= sort(L) |
L[N..N] |
L + L |
[N] |
x

N ::= find(L,N) |
0

[1,4,7,2,0,6,9,2,5,0] → [1,2,4,7,0]

Context-free grammars (CFGs)

terminals

|
|
|
|

L ::= sort(L)
L[N..N]
L + L
[N]
x

N ::= find(L,N) |
0

nonterminals productions

starting
nonterminal

CFGs as structural constraints

Space of programs
=

all ground, whole programs

|
|
|
|

L ::= sort(L)
L[N..N]
L + L
[N]
x

N ::= find(L,N) |
0

x sort(x) x + x x[0..0]
...

sort(x[0..find(x, 0)]) + [0]

x[0..find(x, 0)]
...

...

How big is the space?

E ::= x | E @ E

depth <= 0 x N(0) = 1

depth <= 1 x
@

x x N(1) = 2

depth <= 2 x
@

x x

@ @
@ x x

x x
@

x

@
@

x x
@

x x x

N(2) = 5

N(d) = ?1 + N(d - 1)2

How big is the space?

E ::= x | E @ E

N(d) = 1 + N(d - 1)2 N(d) ~ c2d (c > 1)

N(1) = 1
N(2) = 2
N(3) = 5
N(4) = 26
N(5) = 677
N(6) = 458330
N(7) = 210066388901
N(8) = 44127887745906175987802
N(9) = 1947270476915296449559703445493848930452791205
N(10) = 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026

How big is the space?

E ::= x1 | ... | xk |
E @1 E | ... | E @m E

?
N(0) = k
N(d) = k + m * N(d - 1)2

N(1) = 3
N(2) = 30
N(3) = 2703
N(4) = 21918630
N(5) = 1441279023230703
N(6) = 6231855668414547953818685622630
N(7) = 116508075215851596766492219468227024724121520304443212304350703

k = m = 3

The SyGuS project

https://sygus.org/

Goal: Unify different syntax-guided approaches
Collection of synthesis benchmarks + yearly competition
• 7 competitions since 2013

Common input format + supporting tools
• parser, baseline synthesizers

[Alur et al. 2013]

https://sygus.org/

SyGuS problems

SyGuS problem = < theory, spec, grammar >

A “library” of types and function
symbols

Example: Linear Integer
Arithmetic (LIA)

True, False
0,1,2,...
∧, ∨, ¬, +, ≤, ite

CFG with terminals in the theory
(+ input variables)

Example: Conditional LIA
expressions w/o sums

E ::= x | ite C E E
C ::= E ≤ E | C ∧ C | ¬C

SyGuS problems

SyGuS problem = < theory, spec, grammar >

A first-order logic formula over
the theory

Examples:
f(0, 1) = 1 ∧
f(1, 0) = 1 ∧
f(1, 1) = 1 ∧
f(2, 0) = 2

SyGuS problems

SyGuS problem = < theory, spec, grammar >

A first-order logic formula over
the theory

Examples:
f(0, 1) = 1 ∧
f(1, 0) = 1 ∧
f(1, 1) = 1 ∧
f(2, 0) = 2

Formula with free variables:
x ≤ f(x, y) ∧
y ≤ f(x, y) ∧
(f(x, y) = x ∨ f(x, y) = y)

can inductive synthesis
handle these?

Counter-example guided inductive synthesis
(CEGIS)

Learner Teacher

initial koans

learning fails learning succeeds

guess

new koan

The Zendo of program synthesis

initial examples

Synthesizer
Verification

Oracle

program

counter-
example

The problem statement

Behavioral constraints = examples

Structural constraints = grammar
Search strategy?

[1,2,4,7,0][1,4,7,2,0,6,9,2,5] →
[0] → [0]
[5,1] → [1,5,0]

L ::= sort(L) | L[N..N]
| L + L | [N] | x

N ::= find(L,N) | 0

Enumerative search

Enumerative search

=
Explicit / Exhaustive Search

Idea: Sample programs from the grammar one by one
and test them on the examples
Challenge: How do we systematically enumerate all programs?

bottom-up vs top-down

Bottom-up enumeration

Start from terminals
Combine sub-programs into larger
programs using productions

|
|
|
|

L ::= sort(L)
L[N..N]
L + L
[N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]

Bottom-up: example

sort(x) x[0..0] x + x [0]

find(x,0)

sort(sort(x)) sort(x[0..0]) sort(x + x)

x + sort(x)x + x[0..0]

x + (x + x) x + [0]

sort([0]) x[0..find(x,0)]

sort(x) + x x[0..0] + x

(x + x) + x [0] + x

x[find(x,0)..0]

x[find(x,0)..find(x,0)] sort(x)[0..0]

x[0..0][0..0] (x + x)[0..0] [0][0..0]

...

|
|
|
|

L ::= sort(L)
L[N..N]
L + L
[N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]

iter 0:

iter 1:

iter 2:

Program bank P

x 0

Top-down enumeration

Start from the start non-terminal
Expand remaining non-terminals using
productions

|L ::= L[N..N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]

Top-down: example

|L ::= L[N..N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]

L

L[N..N]x

Worklist P

L[N..N]

x[N..N]

x[0..N]

iter 0:

iter 1:

iter 2:

iter 3:

iter 4:

iter 5: …

L[N..N][N..N]

x[find(L,N)..N] L[N..N][N..N]

x[0.. find(L,N)] x[find(L,N)..N]x[0..0]

iter 6: x[0.. find(L,N)] x[find(L,N)..N] … …

iter 7: x[0.. find(x,N)] x[0.. find(L[N..N],N)] … … …

iter 8: x[0.. find(x,0)] x[0.. find(x,find(L,N))] … … … …

iter 9:

Enumerative Search

Bottom-up Top-down
Smaller to larger

• Has to explore between 3*109 and 1023 programs tofind
sort(x[0..find(x, 0)]) + [0] (depth 6)

P = { ,
,

... }

Prioritize
Explore more promising
candidates first

How to make it scale

N N N - 1 N - 1

Prune
Discard useless subprograms

@ @

m * N2 m * (N - 1)2

x[N..N]
[0][N..N]

dequeue
this first

Equivalence reduction
(also: symmetry breaking)

No matter what we combine it
with, it cannot satisfy the spec

Top-down propagation

When can we discard a subprogram?

sort(x)

It’s equivalent to something we
have already explored

@

sort(sort(x))
L + L

[N] + L

L [] → []
...

Equivalent programs

|
|
|
|

L ::= sort(L)
L[N..N]
L + L
[N]
x

N ::= find(L,N) |
0

sort(x)

bottom_up

x 0

x[0..0] x + x [0] find(x,0)

x + sort(x)x + x[0..0]
x + (x + x) x + [0] sort(x) + x x[0..0] + x
(x + x) + x [0] + x

sort(sort(x)) sort(x + x) sort(x[0..0])
sort([0]) x[0..find(x,0)] x[find(x,0)..0]
x[find(x,0)..find(x,0)] sort(x)[0..0]
x[0..0][0..0] (x + x)[0..0] [0][0..0]

...

Equivalent programs

|
|
|
|

L ::= sort(L)
L[N..N]
L + L
[N]
x

N ::= find(L,N) |
0

sort(x)

bottom_up

x 0

x[0..0] x + x [0] find(x,0)

sort(sort(x)) sort(x[0..0])sort(x + x)
sort([0])

x + sort(x)x + x[0..0]
x + (x + x) x + [0]

x[0..find(x,0)]

sort(x) + x x[0..0] + x
(x + x) + x [0] + x

x[find(x,0)..0]

x[find(x,0)..find(x,0)] sort(x)[0..0]
x[0..0][0..0] (x + x)[0..0] [0][0..0]

...

Equivalent programs

sort(x)
L ::= sort(L) |

L[N..N]
L + L

|
| bottom_up

[N] |
x

N ::= find(L,N) |
0

x 0

x[0..0] x + x [0] find(x,0)

sort(x + x)

x + sort(x)
x + (x + x) x + [0]

x[0..find(x,0)]

sort(x) + x
[0] + x

...

Observational equivalence

In PBE, all we care about is
equivalence on the given inputs!
• easy to check efficiently
• even more programs are equivalent sort(x) x[0..0] x + x [0] find(x,0)

sort(x + x)

x + sort(x)
x + (x + x) x + [0]

x[0..find(x,0)]

sort(x) + x
[0] + x

[[0] → [0]]

x 0

Observational equivalence

sort(x)

x 0

x[0..0] x + x [0] find(x,0)

sort(x + x)

x + sort(x)
x + (x + x) x + [0]

x[0..find(x,0)]

sort(x) + x
[0] + x

[[0] → [0]]In PBE, all we care about is
equivalence on the given inputs!
• easy to check efficiently
• even more programs are equivalent

Observational equivalence

x 0

x[0..0] x + x

x + (x + x)

[[0] → [0]]In PBE, all we care about is
equivalence on the given inputs!
• easy to check efficiently
• even more programs are equivalent

Observational equivalence

Proposed simultaneously in two papers:
• Udupa, Raghavan, Deshmukh, Mador-Haim, Martin, Alur: TRANSIT:

specifying protocols with concolic snippets. PLDI’13
• Albarghouthi, Gulwani, Kincaid: Recursive Program Synthesis. CAV’13

Variations used in most bottom-up PBE tools:
• ESolver (baseline SyGuS enumerative solver)
• Lens [Phothilimthana et al. ASLPOS‘16]
• EUSolver [Alur et al. TACAS‘17]

http://acg.cis.upenn.edu/papers/pldi13_transit.pdf
http://pages.cs.wisc.edu/~aws/papers/cav13a.pdf

Equivalence reduction

No matter what we combine it
with, it cannot fit the spec

Top-down propagation

When can we discard a subprogram?

sort(x)

It’s equivalent to something we
have already explored

@

sort(sort(x))

[] → []
...

L + L

[N] + L

L

Top-down search: reminder

|L ::= L[N..N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]

L

L[N..N]x

L[N..N]

x[N..N]

x[0..N]

iter 0:

iter 1:

iter 2:

iter 3:

iter 4:

iter 5: …

L[N..N][N..N]

x[find(L,N)..N] L[N..N][N..N]

x[0.. find(L,N)] x[find(L,N)..N]x[0..0]

iter 6: x[0.. find(L,N)] x[find(L,N)..N] … …

iter 7: x[0.. find(x,N)] x[0.. find(L[N..N],N)] … … …

iter 8: x[0.. find(x,0)] x[0.. find(x,find(L,N))] … … … …

iter 9:

generates a lot of non-ground terms
only discards ground terms

Top-down propagation

Idea: once we pick the production, infer specs for subprograms

E spec

@

E1 E2

If spec1 = ⊥, discard E1 @ E2 altogether!
For now: spec = examples

spec2spec1

When is TDP possible?

Depends on @!

L [1] → [1]
[1 2] → [2 1]

:

N L

Works when the function is injective!
Q: when would we infer ⊥? A: If at least one of the outputs is []!

[1] → 1
[1 2] → 2

[1] → []
[1 2] → [1]

When is TDP possible?

Depends on @!

L [1] → [1]
[1 2] → [2 1]

:

N L

[1] → []
[1 2] → [1]

[1] → 1
[1 2] → 2

N [1] → 1
[1 2] → 2

+

N N
[1] → ?
[1 2] → ?

[1] → ?
[1 2] → ?

When is TDP possible?

Depends on @!

L [1] → [1]
[1 2] → [2 1]

:

N L

[1] → []
[1 2] → [1]

[1] → 1
[1 2] → 2

N [1] → 1
[1 2] → 2

+

N N[1] → ?
[1 2] → ?

head x

[1] → 0
[1 2] → 1

Something in between?

L
[1] → [1 2]

+

L L

[1] → [2]

[1] → [1 2]

[1] → []

[1] → [1]

[1] → []

[1] → [1 2]

Works when the function is
“sufficiently injective”
• output examples have a

small pre-image

λ2: TDP for list combinators

map f x map (\y . y + 1) [1, -3, 1, 7] → [2, -2, 2, 8]

filter f x filter (\y . y > 0) [1, -3, 1, 7] → [1, 1, 7]

fold f acc x fold (\y z . y + z) 0 [1, -3, 1, 7] → 6

[Feser, Chaudhuri, Dillig ‘15]

+
+

+
+

fold (\y z . y + z) 0 [] → 0

λ2: TDP for list combinators

L [1 -3 1 7] → [2 -2 2 8]

F
1 → 2
-3 → -2
7 → 8

map F x

\y . y + 1

Implemented as a hard-coded set
of rules that derive examples for
sub-program(s) given the
examples for the whole program
and the combinator

λ2: TDP for list combinators

L
[] → []
[0] → [0]
[0 1] → [1 0]
[0 1 2] → [2 1 0]

F

0 → 0
0 → 1

map F x

⊥

filter F x

F

¬([0 1] ≤ [1 0]) ⊥

fold F L x

LF [] → []

[]<[], 0> → [0]
<[0], 1> → [1 0]
<[1 0], 2> → [2 1 0]

\y z. z : y

Condition abduction

Smart way to synthesize conditionals
Used in many tools (under different names):
• FlashFill [Gulwani ‘11]
• Escher [Albarghouthi et al. ‘13]
• Leon [Kneuss et al. ‘13]
• Synquid [Polikarpova et al. ‘13]
• EUSolver [Alur et al. ‘17]

In fact, an instance of TDP!

Condition abduction

E
1 →

1
-1 →

1

C

1 → T
-1 → F
2 → T
-2 → F

if C then E1 else E2

E1 E2

1 → 1
2 → 2

-1 → 1
-2 → 2

1 → 1
-1 → 1
2 → 2
-2 → 2

Q: How does EUSolver
decide how to split the
inputs?
Q: How does EUSolver
generate C?

P = { ,
,

... }

Prioritize
Explore more promising
candidates first

How to make it scale

N N N - 1 N - 1

Prune
Discard useless subprograms

@ @

m * N2 m * (N - 1)2

x[N..N]
[0][N..N]

dequeue
this first

End of the course! Thank you!

Please submit your Principles Of Programming Languages (He Zhu)
of Spring 2021 Student Instructional Rating Survey by May 6!

