Module I: Searching for
Simple Programs




Syntax-Guided Synthesis and
Enumerative Search



Week 1-2

A Behavioral constraints

examples
[0] — 1
[5,1] — 2

Structural constraints

>

expression grammars

Search strategy

Enumeration



Today

Synthesis from examples: motivation and history

Syntax-guided synthesis
° expression grammars as structural constraints
 the SyGuS project

Enumerative search

e enumerating all programs generated by a grammar
* bottom-up vs top-down



Synthesis from examples



Synthesis from Examples

Programming by Example

Inductive Synthesis
Inductive Programming
Inductive Learning



The Zendo game

This is called inductive
learning!

The teacher makes up a secret rule
* e.g. all pieces must be grounded

The teacher builds two koans (a
positive and a negative)

Students take turns to build koans and
ask the teacher to label them

A student can try to guess the rule
e if they are right, they win
* otherwise, the teacher builds a koan on
which the two rules disagree



The Zendo game

l initial koans

guess

Learner
<

new koan

llearning fails

1960s: humans are good at this...
can computers do this?

Teacher

l learning succeeds



Key issues in inductive learning

Program you actually
want

X

Programs matching
the observations

Space of
programs

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?



Key issues in inductive learning

Program you actually
want

X

Programs matching
the observations

Traditional ML emphasizes (2)
* Fix the space so that (1) is easy

So did a lot of PBD work

Space of
programs

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?



The synthesis approach

Program you actually
want

X

Programs matching
the observations

Modern emphasis

Space of
programs

(1) How do you find a program that matches the observations?



The synthesis approach

Program you actually
want

Modern emphasis
* |f you can do really well with (1)
you can win
Programs matching * (2)is stillimportant

the observations

Space of
programs

(1) How do you find a program that matches the observations?



Key idea

A Behavioral constraints

Parametrize the search by structural
constraints, make the program space
domain-specific

, /

Structural constraints

Search strategy



Please submit your Principles Of Programming Languages (He Zhu)
of Spring 2021 Student Instructional Rating Survey by May 6!



Syntax-Guided Synthesis



Example

[1)4)7J2J@)6)9J2)5)@] - [1)2)4)7)6]

f(x) := sort(x[0..find(x, ©)]) + [0]

sort(L)
L[N..N]
L + L

[N]
X

find(L,N)
0



Context-free grammars (CFGs)

starting
nonterminal
&_): := sort(L)
| L[N..N] \
terminals L+ L \
[N] é o
nonterminals X 7 productions
N ::= 'Flnd(L,N) /
0



CFGs as structural constraints

Space of programs

all ground, whole programs

@::= sort(L) X sort(x) Xx + x x[0..0]
L[N..N]
L + L
[N] > x[0..find(x, 0)]
X
N ::= find(L,N) sort(x[0..find(x, 0)]) + [0]

%)



How big is the space?

E ::=x | E@E

depth <=0 @ N(OQ)

depth <=1 N(1)

o

@ @
epth <= N(2)
<=2 @ A A @@f @@@@ @@e'e@e

N(d) = 1 + N(d - 1)2



How big is the space?

E::=x | E@E

N(d) = 1 + N(d - 1)2 N(d) ~ c2° (c > 1)
N(1)=1
N(2) =2
N(3)=5
N(4) = 26
N(5) =677
N(6) = 458330
N(7) = 210066388901
N(8) = 44127887745906175987802
N(9) = 1947270476915296449559703445493848930452791205
N(10) = 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026



How big is the space?

6231855668414547953818685622630
116508075215851596766492219468227024724121520304443212304350703

E = X1 | | Xk |
E @1 E | | E @m E

N(B) = k
N(d) = k + m * N(d - 1)2
N(1) =3 k=m-=3
N(2) = 30
N(3) = 2703
N(4) = 21918630
N(5) = 1441279023230703
N(6) =
N(7) =



The SyGuS project

[Alur et al. 2013]

https://sygus.org/

Goal: Unify different syntax-guided approaches
Collection of synthesis benchmarks + yearly competition
* / competitions since 2013

Common input format + supporting tools
* parser, baseline synthesizers


https://sygus.org/

SyGuS problems

SyGuS problem = < theory, spec, grammar >

,ff”””)' ‘k\\‘\\\

A “library” of types and function CFG with terminals in the theory
symbols (+ input variables)

Example: Linear Integer Example: Conditional LIA
Arithmetic (LIA) expressions w/o sums

True, False E ::=x | ite CEE
0,1,2,... C::=ESE|C/\C|ﬂC

A, V, =, +, £, ite



SyGuS problems

SyGuS problem = < theory, spec, grammar >

T

A first-order logic formula over

‘(//jhptheory
Examples:
(0, 1) =1 A
(1, 0) =1 A
(1, 1) =1 A
(2, 0) = 2



SyGuS problems

SyGuS problem = < theory, spec, grammar >
y P Y 5PEC, & can inductive synthesis

T handle these?
A first-order logic formula over
the theory
Examples: Formula with free variables:
f(e, 1) =1 A X £ f(x, y) A
F(1, @) =1 A y < £(x, y) A
(1, 1) = 1A f(x = X V f(x =
(2. o) = 2 (f(x, y) (X, y) =Y)



Counter-example guided inductive synthesis

(CEGIS)

The Zendo of program synthesis

l initial examples

Synthesizer

program

Verification
< Oracle

counter-

example
learning fails learning succeeds




The problem statement

A Behavioral constraints = examples
[114)7)210:619)215] - [1)214:7)@]
[e] — [eo]

[5,1] — [1,5,0]

Search strategy? > _
Structural constraints = grammar
L ::= sort(L) | L[N..N]J
| L+L | [N] | x

N ::= find(L,N) | o



Enumerative search



Enumerative search

Explicit / Exhaustive Search

ldea: Sample programs from the grammar one by one
and test them on the examples

Challenge: How do we systematically enumerate all programs?

bottom-up vs top-down



Bottom-up enumeration

L ::= sort(L) |
Start from terminals L[N..N] |
_ . L + L |
Combine sub-programs into larger [N] |
programs using productions X
N ::= find(L,N) |
(%)

[ — [1,4]]



Bottom-up: example

Program bank P

iter O: X @

iter 1: sort(x) x[0..0] X + X [0] R
find(x,0)

iter 2: sort(sort(x)) sort(x[0..0]) sort(x + x)

sort([9]) x[@..find(x,@)@ x[find(x,0)..0] N ::

x[find(x,0)..find(x,0)] sort(x)[0..0]
x[0..0][0..0] (x + x)[0..0] [0][0..90] [
X + (X + x) x + [0] sort(x) + x x[0..0] + x

(x + x) +x [0] + x x + x[0..0] x + sort(x)

sort(L) |
L[N..N] |
L + L |
[N] |
X

find(L,N) |
0

tretttt

— [1,4]]



Top-down enumeration

L ::= L[N..N] |

Start from the start non-terminal X
o _ _ N ::= find(L,N) |

Expand remaining non-terminals using 0

productions
[ — [1,4]]



Top-down: example

iter O:

L

Worklist P

ter1: 4 LIN..N]

iter 2:
iter 3:
iter 4:
iter 5:

iter 6:
iter 7:

iter &:

iter9:

L[N.
x[N.
x[ 0.
x[ 0.
x[0..
x[0..

x[0..

N]

N]  L[N..NJ[N..N]

N]  x[find(L,N)..N] L[N..NJ[N..N]
01Q x[o.. find(L,N)] x[find(L,N)..N]

find(L,N)] x[find(L,N)..N]
find(x,N)] x[@.. find(L[N..N],N)]

'Find(x,@)]® x[0.. find(x,find(L,N))]

L[N..N]
X
find(L,N)
0

R

P11

[1,4]]



Enumerative Search

Bottom-up Top-down

Smaller to larger

* Has to explore between 3*10%9and 1023 programs tofind
sort(x[0..find(x, ©)]) + [@] (depth6)



How to make it scale

Prune

Discard useless subprograms

m * N2

(@

N-1 N-1

m* (N - 1)2

Prioritize
Explore more promising
candidates first

p = { [@][N..N]
X[N..N]

.}

J

dequeue
this first



When can we discard a subprogram?

It’s equivalent to something we

have already explored

sort{sort(x))

/ \
/sort(x),

Equivalence reduction
(also: symmetry breaking)

No matter what we combine it
with, it cannot satisfy the spec

L [1 — [1]

/

e

Top-down propagation



Equivalent programs

L ::= sort(L)
L[N..N]
L + L

[N]
X

N ::= find(L,N)
%)

bottom up

>

X 0
sort(x) x[0..0] x + x [@0] find(x,0)

sort(sort(x)) sort(x + x) sort(x[0..0])
sort([0]) x[0..find(x,0)] x[find(x,0)..0]
x[find(x,0)..find(x,0)] sort(x)[0..0]
x[0..0][0..0] (x + x)[0..0] [0][0..0]

X + (x + x) x + [0] sort(x) + x x[0..0] +X
(Xx + x) + x [0] + x X + x[0..0] x + sort(x)



Equivalent programs

o

sort(x)| x[0..0]| x + x |[0]| find(x,0)

L ::= sort(L) |
L[N..N] |
L+ L | bottom_up sort(sort(x))| sort(x + x) |sort(x[0..0])]
[N] | » [sort([0])| x[0..find(x,08)] K[find(x,0)..0]
—— :ind(L W X[find(X,0)..find(x,0)]| [sort(x)[@..0]
B ’ x[0..0][0..0]| [(x + x)[0..0]|[[@][e..0]

X + (X + xX)|x + [0] sort(x) + x x[0..0] + x

(x + x) + x|/ [0] + x X + x[0..0]| x + sort(x)




Equivalent programs

sort(x)| x[0..0]| x + x |[0]| find(x,0)

L ::= sort(L) |
L[N..N] |
| bottom_up sort(x + x)
| B x[0..find(x,0)]

L + L
[N]
X

N ::= find(L,N) |
(%]

X + (X + x)|x + [0] sort(x) + x

[0] + X X + sort(x)



Observational equivalence

In PBE, all we care about is [ — [0]]
equivalence on the given inputs!
* easy to check efficiently

e even more programs are equivalent sort(x) x[0..0] x +x [0] Find(x,0)

X 0

sort(x + X)
x[0..find(x,0)]

X + (X + x) x + [0] sort(x) + x

[0] + X X + sort(x)



Observational equivalence

In PBE, all we care about is
equivalence on the given inputs!
* easy to check efficiently
* even more programs are equivalent

[[6] — [@e]]
K B
sort(x)| x[0..0]] X + X [0]] HFind(x,0)

sort(x + X)

x[0..find(x,0)]

X+ (x + x) X + [0]

sort(x) + X

[0] + X

X + sort(x)




Observational equivalence

In PBE, all we care about is
equivalence on the given inputs!
* easy to check efficiently
* even more programs are equivalent

[[e] — [o]]

x[0..0]

+

X + (X + x)




Observational equivalence

Proposed simultaneously in two papers:

e Udupa, Raghavan, Deshmukh, Mador-Haim, Martin, Alur: TRANSIT:
specifying protocols with concolic snippets. PLDI’13

* Albarghouthi, Gulwani, Kincaid: Recursive Program Synthesis. CAV’'13

Variations used in most bottom-up PBE tools:
e ESolver (baseline SyGuS enumerative solver)
* Lens [Phothilimthana et al. ASLPOS‘16]
e EUSolver [Alur et al. TACAS17]


http://acg.cis.upenn.edu/papers/pldi13_transit.pdf
http://pages.cs.wisc.edu/~aws/papers/cav13a.pdf

When can we discard a subprogram?

It’s equivalent to something we

have already explored

sort{sort(x))

/ \
/sort(x),

Equivalence reduction

No matter what we combine it
with, it cannot fit the spec

L [1 — [1]

/

e

Top-down propagation



Top-down search: reminder

iter O:

L

generates a lot of non-ground terms
only discards ground terms

ter1: 4 LIN..N]

iter 2:
iter 3:
iter 4:
iter 5:

iter 6:
iter 7:

iter &:

iter9:

L[N.
x[N.
x[ 0.
x[ 0.
x[0..
x[0..

x[0..

N]

N]  L[N..NJ[N..N]

N]  x[find(L,N)..N] L[N..NJ[N..N]
01Q x[o.. find(L,N)] x[find(L,N)..N]

find(L,N)] x[find(L,N)..N]
find(x,N)] x[@.. find(L[N..N],N)]

'Find(x,@)]® x[0.. find(x,find(L,N))]

L[N..N]

X

Find(L,N)

%)

—

[1,4]]



Top-down propagation

ldea: once we pick the production, infer specs for subprograms

Ee—— spec

N
I Ny

1 E2

If specl = 1, discard E1 @ E2 altogether!
For now: spec = examples



When is TDP possible?

Depends on @!

—J[1] — [1]

1] > 1 [12] — [21]
[12] > 2
o [11 = 1]

— l[12] — [1]

Works when the function is injective!
Q: when would we infer L?  A: If at least one of the outputsis [ ]!



When is TDP possible?

Depends on @!
Le— | [1] — [1] Ne— |[1] — 1
[1] — 1 [1 2] —» [21] [1 2] —» 2
[1 2] — 2\
N L [1] — ? [ eN Ne—
1] = { [12] —» °? [1] — °?




When is TDP possible?

Depends on @!
Le— | [1] — [1] Ne— |[1] — 1
[1] — 1 [1 2] —» [21] [1 2] —» 2
[1 2] — 2\\
N /L [1] —» ? [ eN Ne—
[1] — [J 12> ¢ l [1] — o
[1 2] —» [1] [12] > 1

head x




Something in between?

L
1] — [1 2]/ Works when the function is
“sufficiently injective”
e output examples have a

L L small pre-image
[1] — [1] [1] — [2]
[ | ANEEAN
[1] — [] [1] — [1 2]
| \
[1] — [1 2] [1] — T[]




A2 TDP for list combinators
[Feser, Chaudhuri, Dillig ‘15]

map f x map (\y .y +1) [1, -3, 1, 7] —» [2, -2, 2, 8]
filter f x filter (\y . y > 0)[1, -3, 1, 7] —» [1,1, 7]
fold f acc x fold (\y z .y+2z)0 [1, -3, 1, 7] —» 6

A

O
)
O
O

fold (\y z .y +z)0 ][] - ©

L1



A2: TDP for list combinators

1 - 2
-3 - -2
7 — 8

Le—[1 -317] > [2 -2 2 8]
map F X
oF Implemented as a hard-coded set
l of rules that derive examples for
sub-program(s) given the
\y . y+1 examples for the whole program

and the combinator



A2: TDP for list combinators

[] = []
[e] — [@]

[0 1] — [1 9]

/\b[elz]a [2 1 0]

<[1 0], 2> > [21 0]

-([e 1] < [1 @])

1

| mapFx | |filterF x| fold F L x

? A
O — © n <[], &> — [0] []
0 - 1 <[@], 1> —» [1 9]




Condition abduction

Smart way to synthesize conditionals

Used in many tools (under different names):
e FlashFill [Gulwani ‘11]
e Escher [Albarghouthi et al. “13]
* Leon [Kneuss et al. “13]
* Synquid [Polikarpova et al. “13]
e EUSolver [Alur et al. “17]

In fact, an instance of TDP!



Condition abduction

Ee

l

NN R R

L

if C then E1 else E2

E2

-1 —» 1
-2 - 2

C El
T ¢
1 - T
-1 - F 1 -
2 - T 2 —
-2 — F

Q: How does EUSolver
decide how to split the
inputs?

Q: How does EUSolver
generate C?



How to make it scale

Prune

Discard useless subprograms

m * N2

(@

N-1 N-1

m* (N - 1)2

Prioritize
Explore more promising
candidates first

p = { [@][N..N]
X[N..N]

.}

J

dequeue
this first



End of the course! Thank you!

Please submit your Principles Of Programming Languages (He Zhu)
of Spring 2021 Student Instructional Rating Survey by May 6!



