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Module I: Searching for  
Simple Programs



Syntax-Guided Synthesis and  
Enumerative Search



Week 1-2

Behavioral constraints

examples
[0] → 1
[5,1] → 2

Search strategy

Enumeration

Structural constraints

expression grammars



Today

Synthesis from examples: motivation and history  
Syntax-guided synthesis
• expression grammars as structural constraints
• the SyGuS project

Enumerative search
• enumerating all programs generated by a grammar
• bottom-up vs top-down



Synthesis from examples



Synthesis from Examples

=
Programming by Example

=
Inductive Synthesis  

Inductive Programming  
Inductive Learning



The Zendo game

The teacher makes up a secret rule
• e.g. all pieces must be grounded

The teacher builds two koans (a  
positive and a negative)
Students take turns to build koans and  
ask the teacher to label them
A student can try to guess the rule
• if they are right, they win
• otherwise, the teacher builds a koan on  

which the two rules disagree

This is called inductive  
learning!



The Zendo game

Learner Teacher

initial koans

learning fails learning succeeds

guess

new koan

1960s: humans are good at this…
can computers do this?



Key issues in inductive learning

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Space of  
programs

Programs matching  
the observations

Program you actually
want



Key issues in inductive learning

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Space of  
programs

Programs matching  
the observations

Program you actually
want

Traditional ML emphasizes (2)
• Fix the space so that (1) is easy

So did a lot of PBD work



The synthesis approach

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Space of  
programs

Programs matching  
the observations

Program you actually
want

Modern emphasis



The synthesis approach

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Space of  
programs

Programs matching  
the observations

Program you actually  
want

Modern emphasis
• If you can do really well with (1)  

you can win
• (2) is still important



Key idea

Structural constraints
Search strategy

Behavioral constraints

Parametrize the search by structural  
constraints, make the program space  

domain-specific



Please submit your Principles Of Programming Languages (He Zhu) 
of Spring 2021 Student Instructional Rating Survey by May 6!



Syntax-Guided Synthesis



Example

f(x) := sort(x[0..find(x, 0)]) + [0]

L ::= sort(L) |
L[N..N] |
L + L |
[N] |
x

N ::= find(L,N) |
0

[1,4,7,2,0,6,9,2,5,0] → [1,2,4,7,0]



Context-free grammars (CFGs)

terminals

|
|
|
|

L ::= sort(L)
L[N..N]  
L + L  
[N]
x

N ::= find(L,N) |
0

nonterminals productions

starting  
nonterminal



CFGs as structural constraints

Space of programs
=

all ground, whole programs

|
|
|
|

L ::= sort(L)
L[N..N]   
L + L  
[N]
x

N ::= find(L,N) |
0

x sort(x) x + x x[0..0]
...

sort(x[0..find(x, 0)]) + [0]

x[0..find(x, 0)]
...

...



How big is the space?

E ::= x | E @ E

depth <= 0 x N(0) = 1

depth <= 1 x
@

x x N(1) = 2

depth <= 2 x
@

x x

@ @
@ x x

x x
@

x

@
@

x x
@

x x x

N(2) = 5

N(d) = ?1 + N(d - 1)2



How big is the space?

E ::= x | E @ E

N(d) = 1 + N(d - 1)2 N(d) ~ c2d (c > 1)

N(1) = 1
N(2) = 2
N(3) = 5
N(4) = 26
N(5) = 677
N(6) = 458330
N(7) = 210066388901
N(8) = 44127887745906175987802
N(9) = 1947270476915296449559703445493848930452791205
N(10) = 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026



How big is the space?

E ::= x1 | ... | xk |
E @1  E | ... | E @m E

?
N(0) = k
N(d) = k + m * N(d - 1)2

N(1) = 3
N(2) = 30
N(3) = 2703
N(4) = 21918630
N(5) = 1441279023230703
N(6) = 6231855668414547953818685622630
N(7) = 116508075215851596766492219468227024724121520304443212304350703

k = m = 3



The SyGuS project

https://sygus.org/

Goal: Unify different syntax-guided approaches  
Collection of synthesis benchmarks + yearly competition
• 7 competitions since 2013

Common input format + supporting tools
• parser, baseline synthesizers

[Alur et al. 2013]

https://sygus.org/


SyGuS problems

SyGuS problem = < theory, spec, grammar >

A “library” of types and function
symbols

Example: Linear Integer  
Arithmetic (LIA)

True, False  
0,1,2,...
∧, ∨, ¬, +, ≤, ite

CFG with terminals in the theory  
(+ input variables)

Example: Conditional LIA  
expressions w/o sums

E ::= x | ite C E E
C ::= E ≤ E | C ∧ C | ¬C



SyGuS problems

SyGuS problem = < theory, spec, grammar >

A first-order logic formula over  
the theory

Examples:
f(0, 1) = 1 ∧
f(1, 0) = 1 ∧
f(1, 1) = 1 ∧
f(2, 0) = 2



SyGuS problems

SyGuS problem = < theory, spec, grammar >

A first-order logic formula over  
the theory

Examples:
f(0, 1) = 1 ∧
f(1, 0) = 1 ∧
f(1, 1) = 1 ∧
f(2, 0) = 2

Formula with free variables:
x ≤ f(x, y) ∧
y ≤ f(x, y) ∧
(f(x, y) = x ∨ f(x, y) = y)

can inductive synthesis  
handle these?



Counter-example guided inductive synthesis
(CEGIS)

Learner Teacher

initial koans

learning fails learning succeeds

guess

new koan

The Zendo of program synthesis

initial examples

Synthesizer
Verification  

Oracle

program

counter-
example



The problem statement

Behavioral constraints = examples

Structural constraints = grammar
Search strategy?

[1,2,4,7,0][1,4,7,2,0,6,9,2,5] →
[0] → [0]
[5,1] → [1,5,0]

L ::= sort(L) | L[N..N]
| L + L | [N] | x  

N ::= find(L,N) | 0



Enumerative search



Enumerative search

=
Explicit / Exhaustive Search

Idea: Sample programs from the grammar one by one  
and test them on the examples
Challenge: How do we systematically enumerate all programs?

bottom-up vs top-down



Bottom-up enumeration

Start from terminals
Combine sub-programs into larger
programs using productions

|
|
|
|

L ::= sort(L)
L[N..N]   
L + L  
[N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]



Bottom-up: example

sort(x) x[0..0] x + x [0]

find(x,0)

sort(sort(x)) sort(x[0..0]) sort(x + x)

x + sort(x)x + x[0..0]

x + (x + x) x + [0]

sort([0]) x[0..find(x,0)]

sort(x) + x x[0..0] + x

(x + x) + x [0] + x

x[find(x,0)..0]

x[find(x,0)..find(x,0)] sort(x)[0..0]

x[0..0][0..0] (x + x)[0..0] [0][0..0]

...

|
|
|
|

L ::= sort(L)
L[N..N]   
L + L  
[N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]

iter 0:

iter 1:

iter 2:

Program bank P

x 0



Top-down enumeration

Start from the start non-terminal  
Expand remaining non-terminals using
productions

|L ::= L[N..N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]



Top-down: example

|L ::= L[N..N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]

L

L[N..N]x

Worklist P

L[N..N]

x[N..N]

x[0..N]

iter 0:

iter 1:

iter 2:

iter 3:

iter 4:

iter 5: …

L[N..N][N..N]

x[find(L,N)..N] L[N..N][N..N]

x[0.. find(L,N)] x[find(L,N)..N]x[0..0]

iter 6: x[0.. find(L,N)] x[find(L,N)..N] … …

iter 7: x[0.. find(x,N)] x[0.. find(L[N..N],N)] … … …

iter 8: x[0.. find(x,0)] x[0.. find(x,find(L,N))] … … … …

iter 9:



Enumerative Search

Bottom-up Top-down
Smaller to larger

• Has to explore between 3*109 and 1023 programs tofind
sort(x[0..find(x, 0)]) + [0] (depth 6)



P = { ,
,

... }

Prioritize
Explore more promising  
candidates first

How to make it scale

N N N - 1 N - 1

Prune
Discard useless subprograms

@ @

m * N2 m * (N - 1)2

x[N..N]
[0][N..N]

dequeue  
this first



Equivalence reduction  
(also: symmetry breaking)

No matter what we combine it  
with, it cannot satisfy the spec

Top-down propagation

When can we discard a subprogram?

sort(x)

It’s equivalent to something we
have already explored

@

sort(sort(x))
L + L

[N] + L

L [] → []
...



Equivalent programs

|
|
|
|

L ::= sort(L)
L[N..N]   
L + L  
[N]
x

N ::= find(L,N) |
0

sort(x)

bottom_up

x 0

x[0..0] x + x [0] find(x,0)

x + sort(x)x + x[0..0]
x + (x + x) x + [0] sort(x) + x x[0..0] + x
(x + x) + x [0] + x

sort(sort(x)) sort(x + x) sort(x[0..0])
sort([0]) x[0..find(x,0)] x[find(x,0)..0]
x[find(x,0)..find(x,0)] sort(x)[0..0]
x[0..0][0..0] (x + x)[0..0] [0][0..0]

...



Equivalent programs

|
|
|
|

L ::= sort(L)
L[N..N]   
L + L  
[N]
x

N ::= find(L,N) |
0

sort(x)

bottom_up

x 0

x[0..0] x + x [0] find(x,0)

sort(sort(x)) sort(x[0..0])sort(x + x)
sort([0])

x + sort(x)x + x[0..0]
x + (x + x) x + [0]

x[0..find(x,0)]

sort(x) + x x[0..0] + x
(x + x) + x [0] + x

x[find(x,0)..0]

x[find(x,0)..find(x,0)] sort(x)[0..0]
x[0..0][0..0] (x + x)[0..0] [0][0..0]

...



Equivalent programs

sort(x)
L ::= sort(L) |

L[N..N]
L + L

|
| bottom_up

[N] |
x

N ::= find(L,N) |
0

x 0

x[0..0] x + x [0] find(x,0)

sort(x + x)

x + sort(x)
x + (x + x) x + [0]

x[0..find(x,0)]

sort(x) + x
[0] + x

...



Observational equivalence

In PBE, all we care about is  
equivalence on the given inputs!
• easy to check efficiently
• even more programs are equivalent sort(x) x[0..0] x + x [0] find(x,0)

sort(x + x)

x + sort(x)
x + (x + x) x + [0]

x[0..find(x,0)]

sort(x) + x
[0] + x

[[0] → [0]]

x 0



Observational equivalence

sort(x)

x 0

x[0..0] x + x [0] find(x,0)

sort(x + x)

x + sort(x)
x + (x + x) x + [0]

x[0..find(x,0)]

sort(x) + x
[0] + x

[[0] → [0]]In PBE, all we care about is  
equivalence on the given inputs!
• easy to check efficiently
• even more programs are equivalent



Observational equivalence

x 0

x[0..0] x + x

x + (x + x)

[[0] → [0]]In PBE, all we care about is  
equivalence on the given inputs!
• easy to check efficiently
• even more programs are equivalent



Observational equivalence

Proposed simultaneously in two papers:
• Udupa, Raghavan, Deshmukh, Mador-Haim, Martin, Alur: TRANSIT:  

specifying protocols with concolic snippets. PLDI’13
• Albarghouthi, Gulwani, Kincaid: Recursive Program Synthesis. CAV’13

Variations used in most bottom-up PBE tools:
• ESolver (baseline SyGuS enumerative solver)
• Lens [Phothilimthana et al. ASLPOS‘16]
• EUSolver [Alur et al. TACAS‘17]

http://acg.cis.upenn.edu/papers/pldi13_transit.pdf
http://pages.cs.wisc.edu/~aws/papers/cav13a.pdf


Equivalence reduction

No matter what we combine it  
with, it cannot fit the spec

Top-down propagation

When can we discard a subprogram?

sort(x)

It’s equivalent to something we
have already explored

@

sort(sort(x))

[] → []
...

L + L

[N] + L

L



Top-down search: reminder

|L ::= L[N..N]
x

N ::= find(L,N) |
0

[[1,4,0,6] → [1,4]]

L

L[N..N]x

L[N..N]

x[N..N]

x[0..N]

iter 0:

iter 1:

iter 2:

iter 3:

iter 4:

iter 5: …

L[N..N][N..N]

x[find(L,N)..N] L[N..N][N..N]

x[0.. find(L,N)] x[find(L,N)..N]x[0..0]

iter 6: x[0.. find(L,N)] x[find(L,N)..N] … …

iter 7: x[0.. find(x,N)] x[0.. find(L[N..N],N)] … … …

iter 8: x[0.. find(x,0)] x[0.. find(x,find(L,N))] … … … …

iter 9:

generates a lot of non-ground terms  
only discards ground terms



Top-down propagation

Idea: once we pick the production, infer specs for subprograms

E spec

@

E1 E2

If spec1 = ⊥, discard E1 @ E2 altogether!  
For now: spec = examples

spec2spec1



When is TDP possible?

Depends on @!

L [1] → [1]
[1 2] → [2 1]

:

N L

Works when the function is injective!
Q: when would we infer ⊥? A: If at least one of the outputs is []!

[1] → 1
[1 2] → 2

[1] → []
[1 2] → [1]



When is TDP possible?

Depends on @!

L [1] → [1]
[1 2] → [2 1]

:

N L

[1] → []
[1 2] → [1]

[1] → 1
[1 2] → 2

N [1] → 1
[1 2] → 2

+

N N
[1] → ?
[1 2] → ?

[1] → ?
[1 2] → ?



When is TDP possible?

Depends on @!

L [1] → [1]
[1 2] → [2 1]

:

N L

[1] → []
[1 2] → [1]

[1] → 1
[1 2] → 2

N [1] → 1
[1 2] → 2

+

N N[1] → ?
[1 2] → ?

head x

[1] → 0
[1 2] → 1



Something in between?

L
[1] → [1 2]

+

L L

[1] → [2]

[1] → [1 2]

[1] → []

[1] → [1]

[1] → []

[1] → [1 2]

Works when the function is
“sufficiently injective”
• output examples have a  

small pre-image



λ2: TDP for list combinators

map f x map (\y . y + 1) [1, -3, 1, 7] → [2, -2, 2, 8]

filter f x filter (\y . y > 0) [1, -3, 1, 7] → [1, 1, 7]

fold f acc x fold (\y z . y + z) 0 [1, -3, 1, 7] → 6

[Feser, Chaudhuri, Dillig ‘15]

+
+

+
+

fold (\y z . y + z) 0 [] → 0



λ2: TDP for list combinators

L [1 -3 1 7] → [2 -2 2 8]

F
1 → 2
-3 → -2
7 → 8

map F x

\y . y + 1

Implemented as a hard-coded set  
of rules that derive examples for  
sub-program(s) given the  
examples for the whole program  
and the combinator



λ2: TDP for list combinators

L
[] → []
[0] → [0]
[0 1] → [1 0]
[0 1 2] → [2 1 0]

F

0 → 0
0 → 1

map F x

⊥

filter F x

F

¬([0 1] ≤ [1 0]) ⊥

fold F L x

LF [] → []

[]<[], 0> → [0]
<[0], 1> → [1 0]
<[1 0], 2> → [2 1 0]

\y z. z : y



Condition abduction

Smart way to synthesize conditionals
Used in many tools (under different names):
• FlashFill [Gulwani ‘11]
• Escher [Albarghouthi et al. ‘13]
• Leon [Kneuss et al. ‘13]
• Synquid [Polikarpova et al. ‘13]
• EUSolver [Alur et al. ‘17]

In fact, an instance of TDP!



Condition abduction

E
1 →

1
-1 →

1

C

1  → T
-1 → F
2  → T
-2 → F

if C then E1 else E2

E1 E2

1 → 1
2 → 2

-1 → 1
-2 → 2

1 → 1
-1 → 1
2 → 2
-2 → 2

Q: How does EUSolver
decide how to split the
inputs?
Q: How does EUSolver
generate C?



P = { ,
,

... }

Prioritize
Explore more promising  
candidates first

How to make it scale

N N N - 1 N - 1

Prune
Discard useless subprograms

@ @

m * N2 m * (N - 1)2

x[N..N]
[0][N..N]

dequeue  
this first



End of the course! Thank you!

Please submit your Principles Of Programming Languages (He Zhu) 
of Spring 2021 Student Instructional Rating Survey by May 6!


