$\exists c \forall i n Q(c, i n)$

int avg(int x, int $y)$ int $t=\operatorname{expr}(\{x / 2, y / 2, x \% 2, y \% 2,2\},\{$ PLUS, DIV $\}) ;$ assert $t==(x+y) / 2$; return t

Module I: Searching for Simple Programs

Syntax-Guided Synthesis and Enumerative Search

Week 1-2

Today

Synthesis from examples: motivation and history
Syntax-guided synthesis

- expression grammars as structural constraints
- the SyGuS project

Enumerative search

- enumerating all programs generated by a grammar
- bottom-up vs top-down

Synthesis from examples

Synthesis from Examples

$=$
Programming by Example =
Inductive Synthesis
Inductive Programming
Inductive Learning

The Zendo game

This is called inductive learning!

The teacher makes up a secret rule - e.g. all pieces must be grounded

The teacher builds two koans (a positive and a negative)
Students take turns to build koans and ask the teacher to label them

A student can try to guess the rule

- if they are right, they win
- otherwise, the teacher builds a koan on which the two rules disagree

The Zendo game

1960s: humans are good at this...
can computers do this?

Key issues in inductive learning

(1) How do you find a program that matches the observations?
(2) How do you know it is the program you are looking for?

Key issues in inductive learning

Traditional ML emphasizes (2)

- Fix the space so that (1) is easy

So did a lot of PBD work
(1) How do you find a program that matches the observations?
(2) How do you know it is the program you are looking for?

The synthesis approach

(1) How do you find a program that matches the observations?
(2) How do you know it is the program you are looking for?

The synthesis approach

Modern emphasis

- If you can do really well with (1) you can win
- (2) is still important
(1) How do you find a program that matches the observations?
(2) How do you know it is the program you are looking for?

Key idea

Please submit your Principles Of Programming Languages (He Zhu) of Spring 2021 Student Instructional Rating Survey by May 6!

Syntax-Guided Synthesis

Example

$$
\begin{aligned}
& {[1,4,7,2,0,6,9,2,5,0] \rightarrow[1,2,4,7,0]} \\
& f(x):=\operatorname{sort}(x[0 . . \operatorname{find}(x, 0)])+[0]
\end{aligned}
$$

Context-free grammars (CFGs)

CFGs as structural constraints

Space of programs =

all ground, whole programs

How big is the space?

depth <=0 ©

How big is the space?

```
                                    E ::= x | E @ E
N(d) = 1 + N(d - 1) 2
    N(d) ~ c (2d
    (c > 1)
N(1) =1
N(2) =2
N(3) =5
N(4)=26
N(5) = 677
N(6)=458330
N(7) =210066388901
N(8)=44127887745906175987802
N(9) = 1947270476915296449559703445493848930452791205
N(10) = 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026
```


How big is the space?

$$
\begin{aligned}
& \mathrm{E}::=\begin{array}{r|l|l}
\mathrm{X}_{1} & \ldots & \mathrm{x}_{\mathrm{k}} \mid \\
\mathrm{E} @_{1} \mathrm{E} & \ldots & \ldots \\
\mathrm{E} & \mathrm{E}
\end{array} \\
& N(0)=k \\
& N(d)=k+m * N(d-1)^{2} \\
& N(1)=3 \\
& k=m=3 \\
& N(2)=30 \\
& N(3)=2703 \\
& N(4)=21918630 \\
& N(5)=1441279023230703 \\
& N(6)=6231855668414547953818685622630 \\
& N(7)=116508075215851596766492219468227024724121520304443212304350703
\end{aligned}
$$

The SyGuS project

https://sygus.org/

Goal: Unify different syntax-guided approaches
Collection of synthesis benchmarks + yearly competition

- 7 competitions since 2013

Common input format + supporting tools

- parser, baseline synthesizers

SyGuS problems

SyGuS problems

SyGuS problems

SyGuS problem = < theory, spec, grammar >

Examples:
$f(0,1)=1 \wedge$
$f(1,0)=1 \wedge$
$f(1,1)=1 \wedge$
$f(2,0)=2$
\wedge
\wedge

can inductive synthesis
handle these?
A first-order logic formula over the theory

Formula with free variables:

$$
\begin{aligned}
& x \leq f(x, y) \wedge \\
& y \leq f(x, y) \wedge \\
& (f(x, y)=x \vee f(x, y)=y)
\end{aligned}
$$

Counter-example guided inductive synthesis (CEGIS)

The Zendo of program synthesis

The problem statement

Enumerative search

Enumerative search

$=$
 Explicit / Exhaustive Search

Idea: Sample programs from the grammar one by one and test them on the examples
Challenge: How do we systematically enumerate all programs?
bottom-up vs top-down

Bottom-up enumeration

Start from terminals
Combine sub-programs into larger programs using productions

$$
\begin{aligned}
& \mathrm{L}::=\operatorname{sort}(\mathrm{L}) \\
& \text { L[N..N] } \\
& \text { L + L } \\
& \text { [N] } \\
& N::=\underset{0}{\operatorname{find}(L, N) \quad \mid} \\
& {[[1,4,0,6] \rightarrow[1,4]]}
\end{aligned}
$$

Bottom-up: example

Program bank \mathbf{P}

```
iter 0: x 0
iter 1: sort(x) x[0..0] x + x [0]
find(x,0)
iter 2:
```

```
sort(sort(x)) sort(x[0..0]) sort(x + x)
```

sort(sort(x)) sort(x[0..0]) sort(x + x)
sort([0]) x[0..find(x,0)
sort([0]) x[0..find(x,0)
x[find(x,0)..find(x,0)] sort(x)[0..0]
x[find(x,0)..find(x,0)] sort(x)[0..0]
x[0..0][0..0] (x + x)[0..0] [0][0..0] [[1,4,0,6] }->\mathrm{ [1,4]]
x + (x + x) x + [0] sort (x) + x x[0..0] + x
x + (x + x) x + [0] sort (x) + x x[0..0] + x
(x+x)+x [0] + x x + x[0..0] x + sort(x)

```
(x+x)+x [0] + x x + x[0..0] x + sort(x)
```


Top-down enumeration

Start from the start non-terminal
Expand remaining non-terminals using productions

$$
\begin{array}{rlr}
\mathrm{L}: & := & \mathrm{L}[\mathrm{~N} . . \mathrm{N}] \\
& \mathrm{x} & \mid \\
\mathrm{N}: & \mathrm{find}(\mathrm{~L}, \mathrm{~N}) & \mid \\
& 0
\end{array}
$$

Top-down: example

Worklist P

```
iter 0: L
iter 1: x L[N..N]
iter 2: L[N..N]
iter 3: x[N..N] L[N..N][N..N]
iter 4: x[0..N] x[find(L,N)..N] L[N..N][N..N]
iter 5: x[0.0] X x[0.. find(L,N)] x[find(L,N)..N]
iter 6: x[0.. find(L,N)] x[find(L,N)..N]
iter 7: x[0.. find(x,N)] x[0.. find(L[N..N],N)]
iter 8: x[0..find(x,0)] x[0.. find (x,find(L,N))]
```

$\begin{aligned} \mathrm{L}: & :=\mathrm{L}[\mathrm{N} . \mathrm{N}] \\ & \mathrm{x} \\ \mathrm{N}: & \mathrm{find}(\mathrm{L}, \mathrm{N}) \\ & \mathrm{O}\end{aligned}$
$[[1,4,0,6] \rightarrow[1,4]]$
iter 9:

Enumerative Search

> Bottom-up Top-down
> Smaller to larger
> - Has to explore between $3^{*} 10^{9}$ and 10^{23} programs to find sort $(x[0 \ldots$ find $(x, 0)])+[0]($ depth 6$)$

How to make it scale

Prune
Discard useless subprograms

Prioritize
Explore more promising candidates first

$$
\begin{aligned}
P=\{ & {[0][N . . N], } \\
& x[N . . N], \\
& \ldots\}
\end{aligned}
$$

When can we discard a subprogram?

It's equivalent to something we have already explored

Equivalence reduction
(also: symmetry breaking)

No matter what we combine it with, it cannot satisfy the spec

Top-down propagation

Equivalent programs

		$\times \quad 0$
$L::=\operatorname{sort}(L) \quad \operatorname{sort}(x) x[0.0] x+x$ [0] find (x,0)		
L[N..N] \|		
L + L	bottom_up	sort(sort(x)) sort (x + x) sort (x[0..0])
[N]	\rightarrow	sort([0]) x [$0 .$. find ($x, 0)$] x [find ($x, 0) . .0]$
$N::=$ find (L, N)		$x[f i n d(x, \theta) \ldots f i n d(x, \theta)] \operatorname{sort}(x)[0.0]$
		$x[0.0][0.0](x+x)[0.0][0][0.0]$
		$x+(x+x) x+[0] \operatorname{sort}(x)+x$ [$0 . .0]+x$
		$(x+x)+x[0]+x x+x[0.0] x+\operatorname{sort}(x)$

Equivalent programs

		$\times 0$
$L::=\operatorname{sort}(L) \quad$ sort $(x) x[0.0] x+x$ [0] find (x,0)		
L[N..N]		
$L+L$	bottom_up	sort(sort (x)) $\operatorname{sort}(x+x) \operatorname{sort}(x[0.0])$
[N]	\rightarrow	$\operatorname{sort}([0]) \times[0 . . f i n d(x, 0)] \times[$ find $(x, 0) \ldots 0]$
$N::=\underset{0}{\text { find }}(\mathrm{L}, \mathrm{N})$		$x[$ find $(x, \theta) \ldots$. find $(x, \theta)]$ sort $(x)[0.0]$
		x[0..0][0..0] ($\mathrm{x}+\mathrm{x}$ [[0..0] [0][0..0]
		$x+(x+x) x+[0] \operatorname{sort}(x)+x \times[0.0]+x$

Equivalent programs

Observational equivalence

In PBE, all we care about is
equivalence on the given inputs!

- easy to check efficiently
- even more programs are equivalent

$$
[[0] \rightarrow \quad[0]]
$$

$$
\times \quad 0
$$

$$
\operatorname{sort}(x) x[0 . .0] \quad x+x \quad[0] \quad \text { find }(x, 0)
$$

$$
\operatorname{sort}(x+x)
$$

$$
x[0 . . f i n d(x, 0)]
$$

$$
x+(x+x) x+[0] \operatorname{sort}(x)+x
$$

$$
[0]+x
$$

$$
x+\operatorname{sort}(x)
$$

Observational equivalence

In PBE, all we care about is
equivalence on the given inputs!

- easy to check efficiently
- even more programs are equivalent

$$
[[0] \rightarrow \quad[0]]
$$

$$
\text { 区 } 0
$$

$$
\operatorname{sort}(x) \times[\theta \ldots, \quad x+x \quad[0] \quad \text { find }(x, 0)
$$

$$
\begin{array}{r}
\operatorname{sort}(x+x) \\
x[0 . . \operatorname{find}(x, 0)]
\end{array}
$$

$$
x+(x+x) x+[0] \quad \operatorname{sort}(x)+x
$$

$$
[0]+x
$$

$x+\operatorname{sort}(x)$

Observational equivalence

In PBE, all we care about is
equivalence on the given inputs!

- easy to check efficiently
- even more programs are equivalent

$$
[[0] \rightarrow \quad[0]]
$$

$$
\text { 区 } 0
$$

$$
x[0 . .0] \quad x+x
$$

$$
x+(x+x)
$$

Observational equivalence

Proposed simultaneously in two papers:

- Udupa, Raghavan, Deshmukh, Mador-Haim, Martin, Alur: TRANSIT: specifying protocols with concolic snippets. PLDI'13
- Albarghouthi, Gulwani, Kincaid: Recursive Program Synthesis. CAV'13

Variations used in most bottom-up PBE tools:

- ESolver (baseline SyGuS enumerative solver)
- Lens [Phothilimthana et al. ASLPOS'16]
- EUSolver [Alur et al. TACAS'17]

When can we discard a subprogram?

It's equivalent to something we have already explored

Equivalence reduction

No matter what we combine it with, it cannot fit the spec

Top-down propagation

Top-down search: reminder

```
            generates a lot of non-ground terms
iter 0: L only discards ground terms
iter 1: X L[N..N]
iter 2: L[N..N]
iter 3: x[N..N] L[N..N][N..N]
iter 4: x[0..N] x[find(L,N)..N] L[N..N][N..N]
```

```
L ::= L[N..N] |
```

L ::= L[N..N] |
N ::= find(L,N) |
N ::= find(L,N) |
0
0
[[1,4,0,6] }->\mathrm{ [1,4]]
[[1,4,0,6] }->\mathrm{ [1,4]]
iter 5: x[0..0] x[0.. find(L,N)] x[find(L,N)..N] ...
iter 6: x[0.. find(L,N)] x[find(L,N)..N]
iter 7: x[0.. find(x,N)] x[0.. find(L[N..N],N)]
iter 8: x[0.. find (x,0)] x[0.. find (x,find(L,N))]
iter 9:

```

\section*{Top-down propagation}

Idea: once we pick the production, infer specs for subprograms


If spec1 = \(\perp\), discard E1 @ E2 altogether!
For now: spec = examples

\section*{When is TDP possible?}


Works when the function is injective!
Q: when would we infer \(\perp\) ? A: If at least one of the outputs is [ ]!

\section*{When is TDP possible?}


\section*{When is TDP possible?}

Depends on @!


\section*{Something in between?}


Works when the function is "sufficiently injective"
- output examples have a small pre-image

\section*{\(\lambda^{2}\) : TDP for list combinators}


\section*{\(\lambda^{2}\) : TDP for list combinators}


\section*{\(\lambda^{2}\) : TDP for list combinators}


\section*{Condition abduction}

Smart way to synthesize conditionals
Used in many tools (under different names):
- FlashFill [Gulwani '11]
- Escher [Albarghouthi et al. '13]
- Leon [Kneuss et al. '13]
- Synquid [Polikarpova et al. '13]
- EUSolver [Alur et al. '17]

In fact, an instance of TDP!

\section*{Condition abduction}


\section*{How to make it scale}

Prune
Discard useless subprograms


Prioritize
Explore more promising candidates first
\[
\begin{aligned}
P=\{ & {[0][N . . N], } \\
& x[N . . N], \\
& \ldots\}
\end{aligned}
\]

\section*{End of the course! Thank you!}

Please submit your Principles Of Programming Languages (He Zhu) of Spring 2021 Student Instructional Rating Survey by May 6!```

