
∃𝑐∀𝑖𝑛 𝑄(𝑐, 𝑖𝑛)

𝜑 𝑝
𝑆𝑘[𝑐](𝑖𝑛)

Program Synthesis

Introduction to Synthesis

The goal: automate programming

Modern program synthesis: FlashFill
[Gulwani 2011]

FlashFill: a feature of Excel 2013
[Gulwani 2011]

FlashFill: a feature of Excel 2013

Modern program synthesis: SQLizer

Problem: “Find the number of papers in OOPSLA 2010”

Output:
SELECT count(Publication.pid)
FROM Publication JOIN Conference ON Publication.cid = Conference.cid
WHERE Conference.name = "OOPSLA" AND Publication.year = 2010

[Yaghmazadeh et al. 2017]

Modern program synthesis: Sketch

Problem: isolate the least significant zero bit in a word
• example: 0010 0101 → 0000 0010

Easy to implement with a loop
int W = 32;

bit[W] isolate0 (bit[W] x) { // W: word size
bit[W] ret = 0;
for (int i = 0; i < W; i++)

if (!x[i]) { ret[i] = 1; return ret; }
}

Can this be done more efficiently with bit manipulation?
• Trick: adding 1 to a string of ones turns the next zero to a 1
• i.e. 000111 + 1 = 001000

[Solar-Lezama 2013]

Sketch: space of possible implementations

/**
* Generate the set of all bit-vector expressions
* involving +, &, xor and bitwise negation (~).

*/

generator bit[W] gen(bit[W] x){
if(??) return x;
if(??) return ??;
if(??) return ~gen(x);
if(??){

return {| gen(x) (+ | & | ^) gen(x) |};
}

}

Sketch: synthesis goal

generator bit[W] gen(bit[W] x, int depth){
assert depth > 0;
if(??) return x;
if(??) return ??;
if(??) return ~gen(x, depth-1);
if(??){

return {| gen(x, depth-1) (+ | & | ^) gen(x, depth-1) |};
}

}

bit[W] isolate0fast (bit[W] x) implements isolate0 {
return gen(x, 3);

}

Sketch: output

bit[W] isolate0fast (bit[W] x) {
return (~x) & (x + 1);

}

Modern program synthesis: Synquid

Problem: intersection of strictly sorted lists
• example: intersect [4, 8, 15, 16, 23, 42] [8, 16, 32, 64] → [8, 16]

Also: we want a guarantee that it’s correct on all inputs!

[Polikarpova et al. 2016]

Synquid: synthesis goal and components

Step 1: define synthesis goal as a type

intersect :: xs:SList a → ys:SList a →
{v:SList a | elems v = elems xs ∩ elems ys}

→ ys:SList a →intersect :: xs:SList a

sorted list

the set of elements

Step 2: define a set of components
• Which primitive operations is our function likely to use?
• Here: {Nil, Cons, <}

{v:SList a | elems v = elems xs ∩
elems ys}

Module 2: Searching for Complex Programs

if y < x
then intersection xs yt
else Cons x (intersection xt yt)

Example: Synquid

intersect :: xs:SList a →
ys:SList a →
{v:SList a | elems v = elems xs ∩

elems ys}

specification

program

intersection = \xs . \ys .
match xs with

Nil -> xs
Cons x xt ->

match ys with
Nil -> ys
Cons y yt ->

if x < y
then intersection xt ys
else

Synquid: synthesis goal and components

24

programsearch

program
space

specification

What is program synthesis?

Dimensions in program synthesis

Behavioral constraints (aka specification):
how do you tell the system
what the program should do?

Structural constraints:
what is the space of programs
to explore?

Search strategy:
How does the system find the
program you want?

[Gulwani 2010]

