CS 314 Spring 2021

Lambda Calculus Review

46

Why Study Lambda Calculus?

» Itis a “core” language
* Very small but still Turing complete

» But with it can explore general ideas

* Language features, semantics, proof systems,
algorithms, ...

» Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!
o C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi
(since 2009), Objective C, Java 8, Swift, Python,

Ruby (Procs), ... (and functional languages like
OCaml, Haskell, F#, ...)

CS 314 Spring 2021 47

Lambda Calculus Syntax

» A lambda calculus expression is defined as

e =X variable
| Ax.e abstraction (func def)
| ee application (func call)

» This grammar describes ASTs; not for parsing
» Lambda expressions also known as lambda terms

e AX.eislike (fun x -> e) In OCaml

That's it! Nothing but (higher-order) functions

CS 314 Spring 2021

Lambda Calculus Semantics

» Evaluation: All that’s involved are function calls
(Ax.e1) e2

* Evaluate e1 with x replaced by e2

» This application is called beta reduction
* (Ax.e1) e2 — e1{e2/x}

» e1{e2/x} is e1 with occurrences of x replaced by e2
» This operation is called substitution
- Replace formal parameters with actual arguments

» When a term cannot be reduced further itis in
beta normal form, e.g., X, Ax.e, X X, X (Ax.e).

CS 314 Spring 2021 49

Beta Reduction Example

» (AXAZzX2Z2)Y
— (AX.(Az.(x 2))) y

¢\

— (AX.(Az.(x 2))) y
(N

— Nz.(y 2)

» Equivalent OCaml code

// since A extends to right

/I 'apply (Ax.e1) e2 — el1{e2/x}
[where e1 =Az.(Xxz),e2 =y

Parameters
e Formal
e Actual

// final result

* (funx->(funz->(xz))y — funz->(yz)

CS 314 Spring 2021

50

Confluence

» We allow reductions to occur anywhere in a
term
» Order reductions are applied does not affect final value!

CS 314 Spring 2021

51

Termination

» May or may not terminate based on the
applications chosen to reduce.

Ax.y) (Ax.x x) (Ax.x X))
=5 Y

(Ax.) (A x.x x) (Ax.x x))
-5 (Ax.y) (4 x .x x) (Ax. x X))

—p

CS 314 Spring 2021

52

Call-by-name vs. Call-by-value

» Sometimes we have a choice about where to
apply beta reduction. Before call (i.e., argument):
* (Az.2) ((A\y.y) X) — (Az.Z) X — X

» Or after the call:
* (Az.2) ((Ay.y) X) — (Ay.y) X — X

» The former strategy is called call-by-value (CBV)
* Evaluate any arguments before calling the function

» The latter is called call-by-name (CBN)
* Delay evaluating arguments as long as possible

CS 314 Spring 2021 53

Call-by-name vs. Call-by-value

» Call-by-name

» Call by value

CS 314 Spring 2021

Ax.y) (Ax.x x) (Ax.x X))
=5 Y

(Ax.) (A x.x x) (Ax.x x))
-5 (Ax.y) (4 x .x x) (Ax. x X))

—p

54

Definitional Interpreter as Semantics

let rec reduce e =
match e with

(Ax. el) e2 -> el{e2/x} Straight B rule
| el e2 ->
let el' = reduce el in Reduce lhs of app
if el’ <> el then el' e2
else el (reduce e2) Reduce rhs of app
| Ax. e -> Ax. (reduce e) Reduce function body
| -> e

Already in a normal form nothing to do

CS 314 Spring 2021 55

Partial Evaluation

» It is also possible to evaluate within a function
(without calling it):
* (Ay.(Az.z) y x) = (Ay.y X)
» Called partial evaluation
* Can combine with CBN or CBYV (as in the interpreter)
* In practical languages, this evaluation strategy is
employed in a limited way, as compiler optimization

int foo(int x) { int foo(int x) {
return 0+x; — return x;

} }

CS 314 Spring 2021 56

Summary

» Lambda calculus is a core model of computation

* We can encode familiar language constructs using
only functions

» E.g., Booleans, control-flows, recursive functions.

» Useful for understanding how languages work

* |deas of types, evaluation order, termination, proof
systems, etc. can be developed in lambda calculus,
» then scaled to full languages

CS 314 Spring 2021 57

