
Lambda Calculus Review

CS 314 Spring 2021 46

47

Why Study Lambda Calculus?

It is a “core” language
• Very small but still Turing complete

But with it can explore general ideas
• Language features, semantics, proof systems,

algorithms, …

Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!
• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, Python,
Ruby (Procs), … (and functional languages like
OCaml, Haskell, F#, …)

CS 314 Spring 2021

48

Lambda Calculus Syntax

A lambda calculus expression is defined as

e ::= x variable
| λx.e abstraction (func def)
| e e application (func call)

Ø This grammar describes ASTs; not for parsing
Ø Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml

That’s it! Nothing but (higher-order) functions
CS 314 Spring 2021

49

Lambda Calculus Semantics
Evaluation: All that’s involved are function calls
(λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta reduction
• (λx.e1) e2 → e1{e2/x}

Ø e1{e2/x} is e1 with occurrences of x replaced by e2
Ø This operation is called substitution

• Replace formal parameters with actual arguments

When a term cannot be reduced further it is in
beta normal form, e.g., x, λx.e, x x, x (λx.e).

CS 314 Spring 2021

50

Beta Reduction Example

(λx.λz.x z) y
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1{e2/x}
// where e1 = λz.(x z), e2 = y

→ λz.(y z) // final result

Equivalent OCaml code
• (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Parameters
• Formal
• Actual

CS 314 Spring 2021

We allow reductions to occur anywhere in a
term

Ø Order reductions are applied does not affect final value!

Confluence

CS 314 Spring 2021 51

May or may not terminate based on the
applications chosen to reduce.

Termination

CS 314 Spring 2021 52

Call-by-name vs. Call-by-value

Sometimes we have a choice about where to
apply beta reduction. Before call (i.e., argument):
• (λz.z) ((λy.y) x) → (λz.z) x → x

Or after the call:
• (λz.z) ((λy.y) x) → (λy.y) x → x

The former strategy is called call-by-value (CBV)
• Evaluate any arguments before calling the function

The latter is called call-by-name (CBN)
• Delay evaluating arguments as long as possible

53CS 314 Spring 2021

Call-by-name vs. Call-by-value

CS 314 Spring 2021 54

Call-by-name

Call by value

Definitional Interpreter as Semantics
let rec reduce e =
match e with

(λx. e1) e2 -> e1{e2/x}
| e1 e2 ->
let e1' = reduce e1 in
if e1’ <> e1 then e1' e2
else e1 (reduce e2)

| λx. e -> λx. (reduce e)
| _ -> e

55

Straight β rule

Reduce lhs of app

Reduce rhs of app

Already in a normal form nothing to do

Reduce function body

CS 314 Spring 2021

Partial Evaluation

It is also possible to evaluate within a function
(without calling it):
• (λy.(λz.z) y x)

Called partial evaluation
• Can combine with CBN or CBV (as in the interpreter)
• In practical languages, this evaluation strategy is

employed in a limited way, as compiler optimization

56

→ (λy.y x)

int foo(int x) {
return 0+x;

}

int foo(int x) {
return x;

}
→

CS 314 Spring 2021

57

Summary

Lambda calculus is a core model of computation
• We can encode familiar language constructs using

only functions
Ø E.g., Booleans, control-flows, recursive functions.

Useful for understanding how languages work
• Ideas of types, evaluation order, termination, proof

systems, etc. can be developed in lambda calculus,
Ø then scaled to full languages

CS 314 Spring 2021

