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Why Study Lambda Calculus?

It is a “core” language 
• Very small but still Turing complete

But with it can explore general ideas
• Language features, semantics, proof systems, 

algorithms, …

Plus, higher-order, anonymous functions (aka 
lambdas) are now very popular!
• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, Python, 
Ruby (Procs), … (and functional languages like 
OCaml, Haskell, F#, …)
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Lambda Calculus Syntax

A lambda calculus expression is defined as

e ::= x variable
|  λx.e abstraction (func def)
|  e e application (func call)

Ø This grammar describes ASTs; not for parsing
Ø Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml

That’s it!  Nothing but (higher-order) functions
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Lambda Calculus Semantics
Evaluation: All that’s involved are function calls 
(λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta reduction
• (λx.e1) e2 → e1{e2/x}

Ø e1{e2/x} is e1 with occurrences of x replaced by e2
Ø This operation is called substitution

• Replace formal parameters with actual arguments

When a term cannot be reduced further it is in 
beta normal form, e.g., x, λx.e, x x, x (λx.e).
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Beta Reduction Example

(λx.λz.x z) y 
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1{e2/x}
// where e1 = λz.(x z), e2 = y

→ λz.(y z) // final result

Equivalent OCaml code
• (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Parameters
• Formal
• Actual
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We allow reductions to occur anywhere in a 
term

Ø Order reductions are applied does not affect final value!

Confluence
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May or may not terminate based on the 
applications chosen to reduce.

Termination
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Call-by-name vs. Call-by-value

Sometimes we have a choice about where to 
apply beta reduction. Before call (i.e., argument):
• (λz.z) ((λy.y) x) → (λz.z) x → x

Or after the call:
• (λz.z) ((λy.y) x) → (λy.y) x → x

The former strategy is called call-by-value (CBV)
• Evaluate any arguments before calling the function

The latter is called call-by-name (CBN)
• Delay evaluating arguments as long as possible
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Call-by-name vs. Call-by-value

CS 314 Spring 2021 54

Call-by-name

Call by value



Definitional Interpreter as Semantics
let rec reduce e =
match e with

(λx. e1) e2 -> e1{e2/x}
| e1 e2 -> 
let e1' = reduce e1 in
if e1’ <> e1 then e1' e2
else e1 (reduce e2)

| λx. e -> λx. (reduce e)
| _ -> e
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Straight β rule

Reduce lhs of app

Reduce rhs of app

Already in a normal form nothing to do

Reduce function body
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Partial Evaluation

It is also possible to evaluate within a function 
(without calling it):
• (λy.(λz.z) y x)

Called partial evaluation
• Can combine with CBN or CBV (as in the interpreter)
• In practical languages, this evaluation strategy is 

employed in a limited way, as compiler optimization
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→ (λy.y x)

int foo(int x) {
return 0+x;

}

int foo(int x) {
return x;

}
→
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Summary

Lambda calculus is a core model of computation
• We can encode familiar language constructs using 

only functions
Ø E.g., Booleans, control-flows, recursive functions.

Useful for understanding how languages work
• Ideas of types, evaluation order, termination, proof 

systems, etc. can be developed in lambda calculus,
Ø then scaled to full languages
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