CS 314: Principles of Programming Languages

OCaml
Higher Order Functions

Anonymous Functions

- Passing around functions is common in OCaml
- So often we don't want to bother to give them names
- Use fun to make a function with no name

(fun $x->x+3) 5$
$=8$

Anonymous Functions

- Syntax
- fun x1 ... xn -> e
- Evaluation
- An anonymous function is an expression
- In fact, it is a value - no further evaluation is possible
> As such, it can be passed to other functions, returned from them, stored in a variable, etc.
- Type checking
- (fun x1... xn -> e):(t1 ->... -> tn -> u) when e:u under assumptions $\mathbf{x 1}$: t1, ..., $x n: t n$.
> (Same rule as let $f \times 1$... xn = e)

Calling Functions, Generalized

- Syntax e0 ... en
- Evaluation
- Evaluate arguments e1 ... en to values v1 ... vn
> Order is actually right to left, not left to right
> But this doesn't matter if e1 ... en don't have side effects
- Evaluate e0 to a function fun $x 1$... xn $->e$
- Substitute vi for xi in e, yielding new expression e'
- Evaluate e^{\prime} to value v, which is the final result
- Example:
- (fun x-> x+x) $1 \Rightarrow 1+1 \Rightarrow 2$

Calling Functions, Generalized

- Syntax e0 e1 ... en
- Type checking (almost the same as before)
- If e0: t1 -> ... $->$ tn $->u$ and $e 1: 七 1, \ldots$, en: $t n$ then e0 e1 ... en : u
- Example:
- (fun $x->x+x) 1$: int
- since (fun x-> $x+x$): int $->$ int and 1 : int

Quiz 1: What does this evaluate to?

let $y=(f u n x->x+1) 2$ in

(fun $z->z-2$) y
A. Error
B. 2
C. 1
D. 0

Quiz 1: What does this evaluate to?

let $y=(f u n x->x+1) 2$ in

(fun $z->z-2) \quad y$
A. Error
B. 2
C. 1
D. 0

Quiz 2: What is this expression's type ?

$$
\text { (fun } x y->x) 23
$$

A. Type error
B. int
C. int -> int -> int
D. 'a -> 'b -> 'a

Quiz 2: What is this expression's type ?

$$
\text { (fun } x y->x) 23
$$

A. Type error
B. int
C. int -> int -> int
D. 'a -> 'b -> 'a

Functions and Binding

- Functions are first-class, so you can bind them to other names as you like
let f x = $\mathbf{x}+3$; ;
let $g=f ;$
g $5=8$
- In fact, let for functions is syntactic shorthand
let f x = body
$\downarrow \quad$ is semantically equivalent to
let $\mathrm{f}=\mathrm{fun} \mathbf{x}$-> body

Example Shorthands

- let next $\mathrm{x}=\mathrm{x}+1$
- Short for let next $=$ fun $\mathbf{x}->\mathbf{x}+1$
- let plus $\mathbf{x} \mathbf{y}=\mathbf{x}+\mathbf{y}$
- Short for let plus $=$ fun $x y->x+y$
- let rec fact $\mathrm{n}=$

$$
\text { if } n=0 \text { then } 1 \text { else } n * \text { fact }(n-1)
$$

- Short for let rec fact $=$ fun $n->$

$$
\text { (if } n=0 \text { then } 1 \text { else } n * \text { fact (} n-1) \text {) }
$$

Quiz 3: What does this evaluate to?

$$
\begin{aligned}
& \text { let } f=\text { fun } x->0 \text { in } \\
& \text { let } g=f \text { in } \\
& \text { g } 1
\end{aligned}
$$

A. Error
B. 2
C. 1
D. 0

Quiz 3: What does this evaluate to?

$$
\begin{aligned}
& \text { let } f=\text { fun } x->0 \text { in } \\
& \text { let } g=f \text { in } \\
& \text { g } 1
\end{aligned}
$$

A. Error
B. 2
C. 1
D. 0

Defining Functions Everywhere

let move $1 \mathrm{x}=$
let left $\mathrm{x}=\mathrm{x}-1$ in (* locally defined fun *)
let right $\mathbf{x}=\mathbf{x}+1$ in (* locally defined fun *)
if 1 then left x
else right x
;
let move' $1 \mathbf{x}=$ (* equivalent to the above *)
if 1 then (fun $y->y-1$) x
else
(fun $y->y+1) x$

Pattern Matching With Fun

- match can be used within fun

$$
\begin{aligned}
\text { (fun } & 1 \text {-> match } 1 \text { with (h: :_) -> h) [1; 2] } \\
& =1
\end{aligned}
$$

- May use standard pattern matching abbreviations (fun (x, y) -> x+y) (1,2)

$$
=3
$$

Passing Functions as Arguments

- In OCaml you can pass functions as arguments (akin to Ruby code blocks)
let plus_three $\mathrm{x}=\mathrm{x}+3$ (* int $->$ int *)
let twice $\mathbf{f} \mathbf{z}=\mathrm{f}(\mathrm{f} \mathbf{z})(*(' a->' a)->$ 'a -> 'a *) twice plus_three $5=11$

map function

What is Map?

Map generates a new list by applying a function to every item in the given list

map f $[\mathrm{n} 1 ; \mathrm{n} 2 ; \mathrm{n} 3]==>$ [fn1; fn2; fn3]

Why do we need Map?

let rec double lst $=$ match lst with
[]-> []
|h::t-> h * 2 :: double t
let rec neg lst $=$ match lst with
[]]-> []

$$
\mid h:: t->h \text { * (-1) :: neg } t
$$

neg [1;2;3;4];

- : int list $=[-1 ;-2 ;-3 ;-4]$

Why do we need Map?

let rec double lst $=$ match lst with

$$
[]->[]
$$

$$
\text { |h::t-> h * } 2 \text { :: double t }
$$

let rec neg lst $=$ match lst with

$$
[]->[]
$$

$$
\mid h:: t->h \text { * }(-1):: \text { neg } t
$$

```
let rec map f l = match l with
    [] -> []
    | (h::t) -> (f h)::(map f t)
```


How to implement Map?

- Let's write the map function
- Takes a function and a list, applies the function to each element of the list, and returns a list of the results

```
let rec map f l = match l with
    [] -> []
    | (h::t) -> (f h)::(map f t)
```

let double $\mathrm{x}=\mathrm{x}$ * 2
let negate $x=-x$
map doulbe $[1 ; 2 ; 3]=[2 ; 4 ; 6]$
map negate $[9 ;-5 ; 0]=[-9 ; 5 ; 0]$

- Type of map?

Type of Map

-What is the type of the map function?
let rec map $f 1=$ match 1 with [] -> []
| (h::t) -> (f h)::(map f t)

Example 1

Subtract 1 from every item in an int list

let $t=[1 ; 2 ; 3 ; 4]$ in map (fun $x->x-1$) t
let $t=[1 ; 2 ; 3 ; 4]$ in let sub1 $x=x-1$ in map sub1 t

int list = [0; 1; 2; 3]

Example 2

Negate every item in an int list
let $\mathrm{t}=[1 ; 2 ; 3 ; 4]$ in
let neg $x=x$ * (-1) in
map neg t

$$
\text { int list }=[-1 ;-2 ;-3 ;-4]
$$

Example 3

Apply a list functions to an int list

```
let lst = [1;2;3];;
let neg x = x * (-1);;
let sub1 x = x-1;;
let double x = x * 2;;
```


let fs = [neg; sub1; double] in map (fun x -> map x Ist) fs

int list list = [[-1; -2; -3]; [0; 1; 2]; [2; 4; 6]]

Quiz 4: What does this evaluate to?

$$
\operatorname{map}(f u n \times->x \text { *. 4) }[1 ; 2 ; 3]
$$

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]

Quiz 4: What does this evaluate to?

$$
\operatorname{map}(f u n \times->x \text { *. 4) }[1 ; 2 ; 3]
$$

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error -- the *. function takes
floats, not ints
D. [4; 8; 12]

Quiz 5: What does this evaluate to?

> let is_even $x=(x \bmod 2=0)$ in map is_even $[1 ; 2 ; 3 ; 4 ; 5]$
A. [false;true; false;true;false]
B. $[0 ; 1 ; 1 ; 2 ; 2]$
C. $[0 ; 0 ; 0 ; 0 ; 0]$
D. false

Quiz 5: What does this evaluate to?

> let is_even $x=(x \bmod 2=0)$ in map is_even $[1 ; 2 ; 3 ; 4 ; 5]$
A. [false; true;false;true;false]
B. $[0 ; 1 ; 1 ; 2 ; 2]$
C. $[0 ; 0 ; 0 ; 0 ; 0]$
D. false

What we learned?

- Map:
- A higher order function.
- List module List. map.
- Takes a function and a list as arguments, applies the function to each member of the list, generates a new list.
- It is powerful.

fold function

What is Fold

- Fold generally
- Takes a function of two arguments, a list, and an initial value (accumulator)
- Combines the list by apply the function to the accumulator and one element from the list and the result of recursively folding the function over the rest of the list.
- Accumulator: (i.e. 0 for addition, 1 for multiplication, false for Boolean OR, negative infinity for maximum, etc.)

Why do we need Fold?

sum a list of integers
let rec sum $1=$ match 1 with
[] $->0$
|h::t -> h + (sum t)
sum $[1 ; 2 ; 3 ; 4] ;$;

- : int = 10

Concatenate a list of strings:

```
let rec concat l =
    match l with
    [] -> ""
    |h::t -> h ^ (concat t)
```

concat ["a";"b";"c"];;

- : string = "abc"

Why do we need Fold?

sum a list of integers
let rec sum $1=$
match 1 with
[]-> 0
$\mid h:: t->h+($ sum $t)$

Concatenate a list of strings:

```
let rec concat l =
    match l with
    [] -> ""
    |h::t -> h ^ (concat t)
```

let rec fold f acc 1 = match 1 with [] $->$ acc
| (h::t) -> fold f (f acc h) t

How to implement Fold?

This is the fold_left function in OCaml's
standard List library

- Common pattern
- Iterate through list and apply function to each element, keeping track of partial results computed so far

```
let rec fold f acc l = match l with
    [] -> acc
    | (h::t) -> fold f (f acc h) t
```

- acc = "accumulator"
- Usually called fold left to remind us that fakes the accumulator as its first argument
-What's the type of fold?

Type of Fold

let rec fold f acc $1=$ match 1 with [] -> acc | (h::t) $->$ fold $f(f$ acc h) t

acc lst -> return type
('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

Example 1

```
let rec fold f a l = match l with
    [] -> a
    | (h::t) -> fold f (f a h) t
```

```
let add x y = x + y in
let lst = [2; 3; 4] in
let t = fold add 0 lst in ...
t : int = 9
```

```
fold add 0 lst
fold add (add 0 2) [3;4]
fold add 2 [3;4]
fold add (add 2 3) [4]
fold add 5 [4]
fold add (add 5 4) [ ]
fold add 9 [ ]
9
```

We just built the sum function!

Example 2

```
let rec fold f a l = match l with
    [] -> a
    | (h::t) -> fold f (f a h) t
```

let next $a-=a+1$ in
fold next $0-[2 ; 3 ; 4 ; 5]$
fold next 1 [3; 4; 5] \rightarrow
fold next 2 [4; 5] \rightarrow
fold next 3 [5] \rightarrow
fold next 4 [] \rightarrow
4

We just built the length function!

Example 3: Fold to for Reverse

```
let rec fold f a l = match l with
    [] -> a
    | (h::t) -> fold f (f a h) t
```

- Let's build the reverse function with fold!
let prepend a x $=\mathrm{x}:$:a in
fold prepend [] [1; 2; 3; 4] \rightarrow
fold prepend [1] [2; 3; 4] \rightarrow
fold prepend [2; 1] [3; 4] \rightarrow
fold prepend [3; 2; 1] [4] \rightarrow
fold prepend [4; 3; 2; 1] [] \rightarrow
[4; 3; 2; 1]

Example 4: Collect even numbers

$$
\begin{aligned}
\text { let } f \operatorname{acc} y= & \text { if }(y \bmod 2)=0 \text { then } y:: a c c \\
& \text { else acc in }
\end{aligned}
$$

fold f [] [1;2;3;4;5;6]

- : int list = [6; 4; 2]

Example 5: Find the maximum

```
let maxList lst =
    match lst with
    | [] -> failwith "empty list"
    | h::t-> fold max h t in
maxList [3;10;5]
- : int = 10
```

(*
maxList [3;10;5]
fold max 3 [10:5]
fold $\max (\max 310)$ [5]
fold max (max 10 5) []
fold max 10 []
10 *)

Example 6: Inner Product

First compute list of pair-wise products, then sum up

```
[x1;x2;x3]*[y1;y2;y3] = x1*y1 + x2*y2 + x3*y3 let
let rec map2 f a b =
    match (a,b) with
    |([],[]) -> ([])
    |(h1::t1,h2::t2) -> (f h1 h2):: (map2 f t1 t2)
    |_ -> invalid_arg "map2"
let product v1 v2 =
    fold (+) 0 (map2 (*) v1 v2)
# val product : int list -> int list -> int = <fun>
product [2;4;6] [1;3;5];;
#- : int = 44
```


Quiz 6: What does this evaluate to?

fold (fun a y -> y::a) [] [3;4;2]
A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error

Quiz 6: What does this evaluate to?

fold (fun a y -> y::a) [] [3;4;2]
A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error

Summary

- map $f[v 1 ; v 2 ; \ldots ; v n]$

$$
=[f v 1 ; f \mathrm{v} 2 ; \ldots ; f \mathrm{vn}]
$$

- e.g., map (fun $x->x+1$) $[1 ; 2 ; 3]=[2 ; 3 ; 4]$

```
- fold f
[v1; v2; ...; vn]
\(=\) fold \(f\)
(f v v1)
[v2; ...; vn]
\(=\) fold \(f(f(f \vee v 1) v 2) \quad[\ldots ; v n]\)
\(=\)
\(=f(f(f(f \vee v 1) \quad v 2)\)...) vn
```

- e.g., fold add 0 [1;2;3;4] =
add (add (add (add 0 1) 2) 3) $4=10$

Combining map and fold

- Idea: map a list to another list, and then fold over it to compute the final result
- Basis of the famous "map/reduce" framework from Google, since these operations can be parallelized

```
let countone l =
    fold (fun a h -> if h=1 then a+1 else a) 0 l
let countones ss =
    let counts = map countone ss in
    fold (fun a c -> a+c) O counts
```

```
countones [[1;0;1]; [0;0]; [1;1]] = 4
```

countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2

```
countones [[1;0]; []; [0;0]; [1]] = 2
```


Example: Sum of sublists

- Given a list of int lists, compute the sum of each int list, and return them as list.
- For example:
- sumList [[1;2;3];[4];[5;6;7]]
- - : int list = [6; 4; 18]
let sumList lsts =
map (fun lst -> fold (+) 0 lst) lsts

fold_right

- Right-to-left version of fold:

$$
\begin{aligned}
& \text { let rec fold_right f la = match } 1 \text { with } \\
& \text { [] -> a } \\
& \text { | (h::t) }->\mathrm{f} \text { h (fold_right f } t \text { a) }
\end{aligned}
$$

- Left-to-right version used so far:

```
let rec fold f a l = match l with
    [] -> a
    | (h::t) -> fold f (f a h) t
```


Left-to-right vs. right-to-left

fold $f v$ [v1; v2; ...;vn] =

$$
f(f(f(f \vee \vee 1) \quad v 2) \ldots) \quad v n
$$

fold_right $f[v 1 ; v 2 ; \ldots ; v n] v=$ $f(f(f(f$ vn v) ...) v2) v1
fold (fun $x y->x-y) 0[1 ; 2 ; 3]=-6$
since $((0-1)-2)-3)=-6$
fold_right (fun x y $->$ x - y) $[1 ; 2 ; 3] 0=2$ since 1-(2-(3-0)) $=2$

When to use one or the other?

- Many problems lend themselves to fold_right
- But it does present a performance disadvantage
- The recursion builds of a deep stack: One stack frame for each recursive call of fold_right
- An optimization called tail recursion permits optimizing fold so that it uses no stack at all
- We will see how this works in a later lecture!

