
CS 314:
Principles of Programming Languages

He Zhu

1

Course Goals

Understand why there are so many languages
Describe and compare their main features
Choose the right language for the job
Write better code
• Code that is shorter, more efficient, with fewer bugs

In short:
• Become a better programmer with a better

understanding of your tools.

CS314 Spring 2021 2

Course Activities
Learn different types of languages
Learn different language features and tradeoffs
• Programming patterns repeat between languages

Study how languages are specified
• Syntax, Semantics — mathematical formalisms

Study how languages are implemented
• Mechanisms such as closures, tail recursion, lazy evaluation,

garbage collection, …

CS314 Spring 2021 3

Syllabus

Functional programming (OCaml)
Lambda Calculus (OCaml)
Dynamic / Scripting languages (Python)
Logical Programming (Prolog)
Object-Oriented Programming (Python)
Scoping, type systems, parameter passing, Comparing
language styles; other topics (OCaml, Prolog, Python)
Program Verification and Program Synthesis (if possible)

CS314 Spring 2021 4

Workload

CS314 Spring 2021 5

Rules and Reminders

Use lecture notes as your text
• Supplement with readings, Internet

Keep ahead of your work
• Get help as soon as you need it

Ø Office hours, Piazza (email as a last resort)

Assignment late penalties
• 1 day late – 5%
• 2 days late – 15%
• 3 days late – 30%
• 4 days late – 50%
• > 4 days late – No grade

CS314 Spring 2021 6

Academic Integrity

All written work (including projects) must be done on your
own
• Do not copy code from other students
• Do not copy code from the web
• Do not post your code on the web

Auto-comparing code for every assignment
• Receive 0 if two assignments are flagged by the tool.

Work together on high-level project questions
• Do not look at/describe another student’s code
• If unsure, ask an instructor!

CS314 Spring 2021 7

Other information
Zoom:
(https://rutgers.zoom.us/j/96220906368?pwd=aVM2aUQ1SytWcDc5d0hEYj
hWcXd0dz09)

Sakai: (https://sakai.rutgers.edu/portal/site/8acbdc1d-e374-4a79-bafa-
bab0e8d58811)

Piazza: (https://piazza.com/rutgers/spring2021/cs314)

Website: (https://ru-automated-reasoning-group.github.io/cs314_s21/)

Office Hours: Thursday 1:20p - 2:30p.

TA information will be posted on course website shortly.

https://rutgers.zoom.us/j/96220906368?pwd=aVM2aUQ1SytWcDc5d0hEYjhWcXd0dz09
https://sakai.rutgers.edu/portal/site/8acbdc1d-e374-4a79-bafa-bab0e8d58811
https://piazza.com/rutgers/spring2021/cs314
https://ru-automated-reasoning-group.github.io/cs314_s21/

CS 314:
Principles of Programming Languages

Overview

13

Plethora of programming languages

LISP:

Prolog:

(defun double

size([],0).

(x) (* x 2))

size([H|T],N) :-
size(T,N1), N is N1+1.

OCaml: List.iter (fun x -> print_string x)
[“hello, ”; s; "!\n”]

CS314 Spring 2021

All Languages Are (kind of) Equivalent

A language is Turing complete if it can compute any
function computable by a Turing Machine

Essentially all general-purpose programming languages
are Turing complete
• I.e., any program can be written in any programming language

Therefore this course is useless?!
• Learn one programming language, always use it

CS314 Spring 2021

Studying Programming Languages

Will make you a better programmer
• Programming is a human activity

Ø Features of a language make it easier or harder to program for a specific
application

• Ideas or features from one language translate to, or are later
incorporated by, another
Ø Many “design patterns” in Java are functional programming techniques

• Using the right programming language or style for a problem may
make programming
Ø Easier, faster, less error-prone

CS314 Spring 2021

Studying Programming Languages

Become better at learning new languages
• A language not only allows you to express an idea, it also shapes

how you think when conceiving it

• You may need to learn a new (or old) language
Ø Paradigms change quickly in CS

Ø Also, may need to support or extend legacy systems

CS314 Spring 2021

Changing Language Goals

1950s-60s – Compile programs to execute efficiently
• Language features based on hardware concepts

Ø Integers, reals, goto statements

• Programmers cheap; machines expensive
Ø Computation was the primary constrained resource

Ø Programs had to be efficient because machines weren’t
• Note: this still happens today, just not as pervasively

CS314 Spring 2021

Changing Language Goals

Today
• Language features based on design concepts

Ø Encapsulation, records, inheritance, functionality, assertions

• Machines cheap; programmers expensive
Ø Scripting languages are slow(er), but run on fast machines
Ø They’ve become very popular because they ease the programming

process
• The constrained resource changes frequently

Ø Communication, effort, power, privacy, …
Ø Future systems and developers will have to be nimble

CS314 Spring 2021

Theme: Software Security

Security is a big issue today
Features of the language can help (or hurt)
• C/C++ lack of memory safety leaves them open for many

vulnerabilities: buffer overruns, use-after-free errors, data
races, etc.

• Type safety is a big help, but so are abstraction and isolation, to
help enforce security policies, and limit the damage of possible
attacks

Secure development requires vigilance
• Do not trust inputs – unanticipated inputs can effect surprising

results! Therefore: verify and sanitize

CS314 Spring 2021

Zero-cost Abstractions in Rust

A key motivator for writing code in C and C++ is the low
cost of the abstractions use
• Data is represented minimally; no metadata required
• Stack-allocated memory can be freed quickly
• Malloc/free maximizes control – no GC or mechanisms to support

it are needed
But no-cost abstractions in C/C++ are insecure
Rust language has safe, zero-cost abstractions
• Type system enforces use of ownership and lifetimes
• Used to build real applications – web browsers, etc.

CS314 Spring 2021

Language Attributes to Consider
Syntax
• What a program looks like

Semantics
• What a program means (mathematically)

Paradigm and Pragmatics
• How programs tend to be expressed in the language

Implementation
• How a program executes (on a real machine)

CS314 Spring 2021

Syntax

The keywords, formatting expectations, and “grammar” for
the language
• Differences between languages usually superficial

Ø C / Java
Ø Ruby
Ø OCaml

if (x == 1) { … } else { … }
if x == 1 … else … end
if (x = 1) then … else …

• Differences initially annoying; overcome with experience

Concepts such as regular expressions, context-free
grammars, and parsing handle language syntax

CS314 Spring 2021

Semantics

What does a program mean? What does it do?
• Same syntax may have different semantics in different

languages!

Can specify semantics informally (in prose) or formally
(in mathematics)

Java
Physical Equality
a == b

Structural Equality
a.equals(b)

C a == b *a == *b
Ruby a.equal?(b) a == b
OCaml a == b a = b

CS314 Spring 2021

Why Formal Semantics?

Textual language definitions are often incomplete and
ambiguous
• Leads to two different implementations running the same

program and getting a different result!
A formal semantics is basically a mathematical definition
of what programs do
• Benefits: concise, unambiguous, basis for proof

We will consider operational semantics
• Consists of rules that define program execution
• Basis for implementation, and proofs that programs do what they

are supposed to
CS314 Spring 2021

Paradigm

There are many ways to compute something
• Some differences are superficial

Ø For loop vs. while loop
• Some are more fundamental

Ø Recursion vs. looping
Ø Mutation vs. functional update
Ø Manual vs. automatic memory management

Language’s paradigm favors some computing methods
over others. This class:
- Imperative
- Functional

CS314 Spring 2021
- Scripting/dynamic

Imperative Languages
Also called procedural or von Neumann
Building blocks are procedures and statements
• Programs that write to memory are the norm

int x = 0;
while (x < y) x = x + 1;

• FORTRAN (1954)
• Pascal (1970)
• C (1971)

CS314 Spring 2021

Functional (Applicative) Languages

Favors immutability
• Variables are never re-defined
• New variables a function of old ones (exploits recursion)

Functions are higher-order
• Passed as arguments, returned as results

• LISP (1958)
• ML (1973)
• Scheme (1975)
• Haskell (1987)
• OCaml (1987)

CS314 Spring 2021

OCaml

A mostly-functional language.
• Has objects, but won’t discuss (much)
• Developed in 1987 at INRIA in France
• Dialect of ML (1973)
Natural support for pattern matching.
• Generalizes switch/if-then-else - very elegant
Has full featured module system.
• Much richer than interfaces in Java or headers in C
Include type inference.
• Ensures compile-time type safety, no annotations.

CS314 Spring 2021

Dynamic (Scripting) Languages

Rapid prototyping languages for common tasks
• Traditionally: text processing and system interaction
“Scripting” is a broad genre of languages
• “Base” may be imperative, functional, OO…
Increasing use due to higher-layer abstractions
• Originally for text processing; now, much more

• sh (1971)
• perl (1987)
• Python (1991)
• Ruby (1993)

CS314 Spring 2021

Other Language Paradigms
Logic programming
• Prolog, λ-prolog, CLP, Minikanren, Datalog

Object-oriented programming
• Simula, Smalltalk, C++, Java, Scala, Python

Parallel/concurrent/distributed programming
• Cilk, Fortress, Erlang, MPI, Hadoop

CS314 Spring 2021

Concurrent / Parallel Languages

Traditional languages had one thread of control
• Processor executes one instruction at a time

Newer languages support many threads
• Thread execution conceptually independent
• Means to create and communicate among threads

Concurrency may help/harm
• Readability, performance, expressiveness

Won’t cover in this class

CS314 Spring 2021

Summary

Programming languages vary in their
• Syntax
• Semantics
• Style/paradigm and pragmatics
• Implementation

They are designed for different purposes
• And goals change as the computing landscape changes, e.g., as

programmer time becomes more valuable than machine time

Ideas from one language appear in others

CS314 Spring 2021 52

