CS314 Principles of Programming Languages Written Assignment 2

Name: \qquad

NetID: \qquad

Instructions:

- The written assignment can be completed in 1 hour.
- The quiz has a total of 8 points.

1. True or False
(a) ($1 / 2$ point) In Prolog, $\mathrm{A}+\mathrm{b}$ unifies with $\mathrm{b}+\mathrm{A}$. T / F.
(b) ($1 / 2$ point) Reordering the terms in the body of a Prolog rule may change the result. T / F
(c) ($1 / 2$ point) The result of the query ?- 3 is $\mathrm{A}+1$ is $\mathrm{A}=2 . \quad \mathrm{T} / \mathrm{F}$
(d) ($1 / 2$ point) With occurs_check enabled, a Prolog query can avoid infinite search. T / F
2. What is a unifier of each of the following terms. Assume that occurs-check is true.
(a) (1/2 point) $f(X, Y, Z)=f(Y, Z, X)$
A. $\{X / Y, Y / Z\}$
B. $\{X / Y, Z / y\}$
C. $\{X / A, Y / A, Z / A\}$
D. None of the above.
(b) (1/2 point) tree $(\mathrm{X}$, tree $(\mathrm{X}, \mathrm{a}))=\operatorname{tree}(\mathrm{Y}, \mathrm{Z})$
A. Does not unify.
B. $\{X / Y, Z / \operatorname{tree}(X, a)\}$
C. $\{X / Y, Z /$ tree $(Y, a)\}$
D. $\{Y / X, Z /$ tree $(Y, a)\}$
(c) $(1 / 2$ point $)[\mathrm{A}, \mathrm{B}, \mathrm{C}]=[(\mathrm{B}, \mathrm{C}), \mathrm{b}, \mathrm{a}(\mathrm{A})]$
A. Does not unify.
B. $\{A /(b, a(A)), B / b, C / a(A)\}$
C. $\{A /(b, a(C)), B / b, C / a(A)\}$
D. None of the above.
3. (1 point) Fill in the implementation of the segment(A,B) predicate below, which holds when A is a contiguous segment contained anywhere within list B. For example:
```
?- segment([3,5], [1,2,3,4,5]).
```

false.

```
?- segment([X,Y], [1,2,3,4]).
X = 1, Y=2;
X = 2, Y=3;
X = 3, Y=4;
false.
?- segment([3,4,X], [1,2,3,4,5]).
X=5;
false.
```

Fill in implementation below (hint: use the prefix, suffix, and append functions you have learned and you do not need to provide the code of these functions).
\square
4. We are going to encode a graph over cities in Prolog. In particular, link(a,b) represents the fact that there is a path from city a to city b. For example:

```
link(san_diego, seattle).
link(seattle, dallas).
link(dallas, new_york).
link(new_york, chicago).
link(new_york, seattle).
link(chicago, boston).
link(boston, san_diego).
```

(a) ($1 / 2$ point) First, write a predicate path_2(A,B) which holds if there is path of length two from A to B. The path is allowed to have duplicate cities. For example:

```
    ?- path_2(new_york,B).
    B = boston ;
    B = dallas.
    ?- path_2(A,dallas).
    A = san_diego ;
    A = new_york ;
    false.
```

Fill in your implementation of path $_2$ below:
\square
(b) (1 point) Write a predicate path_N(A, B, N) which holds if there is a path of length N between A and B. The path is allowed to have duplicate cities, and you can assume that N is greater or equal to 1 . For example:

```
?- path_N(new_york, B, 2).
B = boston ;
B = dallas ;
false.
```

```
?- path_N(new_york, B, 3).
B = san_diego ;
B = new_york ;
false.
?- path_N(A, san_diego, 5).
A = seattle ;
false.
```

Hint: you may want to consider two cases in your code: $N=1$ and $N>1$.

Fill in the implementation of path_N below:

5. (1 point) In this problem we will write a matrix transpose function in Python functions. A matrix is a two dimentional array, which we will represent as a list of lists of integers. For example, the following is a 2×3 matrix (meaning the height of the matrix is 2 and the width is 3):

$$
\begin{array}{r}
A=\left[\begin{array}{llll}
{[} & 1, & 2, & 3
\end{array}\right], \\
{\left[\begin{array}{lll}
4, & 5, & 6
\end{array}\right]}
\end{array}
$$

The transpose of a matrix A of dimensions $n \times m$ is a matrix B of dimensions $m \times n$ such that $A[i][j]$ is equal to $B[j][i]$ (for all valid indices i and j into matrix A). For example:

```
>>> transpose([[ 1, 2, 3],
    [ 4, 5, 6]])
    [[1, 4],
        [2, 5],
    [3, 6]]
```

Your code must be in this form:

```
def transpose(m):
    height = len(m)
    width = len(m[0])
    return [ [ ______ for ___ in ___________ ] for ___ in ___________ ]
```

Fill in the return statement of transpose below:
6. (1 point) Consider the following Python inheritance graph for classes $A, B, C, D, E, F, G, H, I$ and Object:

Fill in the method resolution order of class A.

