CS314 Principles of Programming Languages Written Assignment 1

March 29, 2021

Name:				
NetID·				

Instructions:

- The written assignment has a total of **8** points.
- Answer essay questions in 2 to 3 sentences. Longer answers are not needed.
- For partial credit, show all of your work and clearly indicate your answers.
- You can either annotate your solution on this document or put your solution in another text document (e.g. MS Word) with clear marks to label the answer to each question.
- If you do not know how to type λ , just write lambda in English.
- Submit a PDF version of your solution to Sakai (e.g. using the printing function of Word).

OCaml

- 1. Write the types of the following OCaml expressions or write "type error" if the expression has no type:
 - (a) $(\frac{1}{2} \text{ point})$ [("I", 4.0); ("R", 0.0); ("S", 1)]
 - (b) ($\frac{1}{2}$ point) fun a -> fun b -> (a b) + 1
 - (c) $(\frac{1}{2} \text{ point})$

```
type 'a option = Some of 'a | None
let f a =
    if a < 0.0 then None else Some a</pre>
```

- 2. Provide expressions (without type annotations) that have the following types:
 - (a) ($\frac{1}{2}$ point) int -> int list -> bool list

(b) (¹/₂ point) 'a -> ('a->'b) -> 'b

(c) (½ point) Define a function f that when used in the following expression will not produce any type errors:

```
fold_left f ([],0) [5;4;3;2;1]
```

The implementation and type of fold_left are given for reference, below.

Lambda Calculus

3. Choose whether the following statements are true or false:

(a)	($\frac{1}{2}$ point)	$\lambda x.\lambda y.y x$ is α -equivalent to $\lambda f.\lambda n.n f$	A. True / B. False
(b)	(¹ / ₂ point)	$\lambda y. y x$ is α -equivalent to $\lambda x. x y$	A. True / B. False

4. (1 point) Reduce the following λ expression to normal form. Show each reduction step. If already in normal form, write "normal form".

$$(\lambda x.x (\lambda x.y x)) (\lambda z.z)$$

5. (1 point) Reduce the following λ expression to normal form. Show each reduction step. If already in normal form, write "normal form". Hint: function application is left-associative x y z = (x y) z.

 $(\lambda x.\lambda y.x y z) (\lambda c.c) ((\lambda a.a) b)$

6. (1 point) Reduce the following λ expression to normal form. Show each reduction step. If already in normal form, write "normal form". Hint: you may need to perform α -conversion during the evaluation.

 $(\lambda x.(\lambda y.(x y))) y$

7. (1 point) Which of the following lambda term has the same semantics as this bit of OCaml code (choose exactly one):

let func $x = (fun \ y \rightarrow y \ x)$ a b A. $(\lambda y.y \ x) \ a \ b$ B. $(\lambda x.(\lambda y.y \ x) \ a \ b)$ C. $(\lambda x.(\lambda y.y \ x)) \ a \ b$ D. $(x(\lambda y.y \ x)) \ a \ b$